Giorgio Stefani

Exercise 1 (4 points + 2 bonus points).

(i) [2 points] Let $d: \mathbb{R}^2 \times \mathbb{R}^2 \to [0, +\infty)$ be defined by

$$d(x,y) = \begin{cases} |x-y| & \text{if } x, y \text{ and } 0 \text{ are collinear,} \\ |x|+|y| & \text{otherwise,} \end{cases}$$

for all $x, y \in \mathbb{R}^2$. Prove that (\mathbb{R}^2, d) is a metric space. Is (\mathbb{R}^2, d) complete? Motivate your answer. (ii) [2 points + 2 bonus points] Let $d: \mathbb{N} \times \mathbb{N} \to [0, +\infty)$, where $\mathbb{N} = \{1, 2, 3, ...\}$, be defined by

$$d(m,n) = \left|\frac{1}{m} - \frac{1}{n}\right| \quad \text{for all } m,n \in \mathbb{N}.$$

- (a) [2 points] Prove that (\mathbb{N}, d) is a metric space and that is not complete.
- (b) [2 bonus points] Find a completion of (\mathbb{N}, d) .

Exercise 2 (4 points). Let $a, b \in \mathbb{R}$, with a < b, and let $X = C([a, b]; \mathbb{R})$ be the set of continuous functions $f: [a, b] \to \mathbb{R}$.

(i) [2 points] Let $d: X \times X \to [0, +\infty)$ be defined as

$$d(f,g) = \int_a^b |f(x) - g(x)| \,\mathrm{d}x$$

for all $f, g \in X$. Prove that (X, d) is a metric space.

(ii) [2 points] Is (X, d) complete? Motivate your answer.

Exercise 3 (4 points). Let X be a non-empty set and let (Y, d) be a metric space. Assume that $\varphi: X \to Y$ is injective. Let $d_{\varphi}: X \times X \to \mathbb{R}$ be defined as

$$d_{\varphi}(x, x') = d(\varphi(x), \varphi(x'))$$
 for all $x, x' \in X$.

- (i) [1 point] Prove that (X, d_{φ}) is a metric space.
- (ii) [3 points] Prove that (X, d_{φ}) is complete if and only if $(\varphi(X), d)$ is complete.

Exercise 4 (4 points). Let $A, B \subset \mathbb{R}^n$ be two non-empty sets. Let us define

$$\operatorname{dist}(A, B) = \inf \left\{ |x - y| : x \in A, \ y \in B \right\}.$$

- (i) [2 points] Prove that if A is compact and B is closed and $A \cap B = \emptyset$, then d(A, B) > 0.
- (ii) [2 points] Is it true that d(A, B) > 0 for all $A, B \subset \mathbb{R}^n$ non-empty, closed and such that $A \cap B = \emptyset$? If yes, then prove the statement. If no, then give a counterexample.

Giorgio Stefani

Exercise 5 (4 points). Let (X, d) be a compact metric space. Assume that $T: X \to X$ satisfies

d(T(x), T(y)) < d(x, y) for all $x, y \in X, x \neq y$.

- (i) [1 point] Prove that, if $x, y \in X$ are fix points of the map T, then x = y.
- (ii) [1 point] Prove that the map $f: X \to \mathbb{R}$, defined as f(x) = d(T(x), x) for all $x \in X$, is continuous.

(iii) [2 points] Prove that the map T has a unique fix point $\bar{x} \in X$.

Exercise 6 (4 points). Let (X, d) be a metric space and let $A \subset X$. Let L > 0 and let $f: A \to \mathbb{R}$ be an *L*-Lipschitz function on *A*, that is, such that

$$|f(x) - f(y)| \le L d(x, y)$$
 for all $x, y \in A$.

Prove the following two statements.

- (i) [2 points] There exists an L-Lipschitz function $F: X \to \mathbb{R}$ on X such that $F|_A = f$.
- (ii) [2 points] There exist two *L*-Lipschitz functions $m, M: X \to \mathbb{R}$ on X such that $m|_A = M|_A = f$ and with the following property: if $g: X \to \mathbb{R}$ is an *L*-Lipschitz function on X such that $g|_A = f$, then $m \leq g \leq M$ on X.

Exercise 7 (4 points). Let (X, d) be a metric space. Recall that the *diameter* of a non-empty set $A \subset X$ is defined as diam $(A) = \sup\{d(x, y) : x, y \in A\}$.

- (i) [3 points] Let $(C_n)_{n \in \mathbb{N}}$ be a sequence of subsets of X such that:
 - (a) C_n is non-empty and closed for all $n \in \mathbb{N}$;
 - (b) $C_{n+1} \subset C_n$ for all $n \in \mathbb{N}$;
 - (c) $\lim_{n \to +\infty} \operatorname{diam}(C_n) = 0.$

Prove that, if (X, d) is complete, then there exists a unique $x \in X$ such that $\bigcap_{n \in \mathbb{N}} C_n = \{x\}$.

(ii) [1 point] Find a metric space (X, d) and a sequence $(C_n)_{n \in \mathbb{N}}$ of subsets of X satisfying properties (a), (b) and (c) of the previous point and such that $\bigcap_{X \in \mathcal{N}} C_n = \emptyset$.

Exercise 8 (4 points). Let $p \in [1, +\infty]$ and let $(\ell^p(\mathbb{N}), \|\cdot\|_{\ell^p(\mathbb{N})})$ be the Banach space of *p*-summable real sequences. Prove that $(\ell^p(\mathbb{N}), \|\cdot\|_{\ell^p(\mathbb{N})})$ is a Hilbert space if [2 points] and only if [2 points] p = 2.

Bonus (4 points). Let us define

$$\mathcal{S}(\mathbb{R}) = \left\{ f \in C^{\infty}(\mathbb{R}) : \sup_{x \in \mathbb{R}} |x|^m |f^{(n)}(x)| < +\infty \text{ whenever } m, n \in \mathbb{N}_0 \right\},\$$

where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $C^{\infty}(\mathbb{R})$ is the set of infinitely differentiable functions and $f^{(n)}$ denotes the *n*-th derivative of f. Prove that, if $f \in \mathcal{S}(\mathbb{R})$, then $f^{(n)}$ is uniformly continuous on \mathbb{R} for all $n \in \mathbb{N}_0$.

Giorgio Stefani

Exercise 9 (4 points). Let (X, \mathscr{A}, μ) be a measurable space. A point $x \in X$ is called an *atom* of μ if $\{x\} \in \mathscr{A} \text{ and } \mu(\{x\}) > 0.$ From now on, we assume $\mu(X) < +\infty$.

(i) [2 points] Prove that the set

$$A_n = \left\{ x \in X : x \text{ is an atom of } \mu \text{ with } \mu(\{x\}) \ge \frac{\mu(X)}{n} \right\}$$

is finite for all $n \in \mathbb{N}$.

(ii) [2 points] Prove that the set $A = \{x \in X : x \text{ is an atom of } \mu\}$ is at most countable.

Exercise 10 (4 points). Let X be a non-empty set and let $\mathcal{Q} \subset \mathscr{P}(X)$. We define

$$\sigma(\mathscr{Q}) = \bigcap \Big\{ \mathscr{A} \text{ is a } \sigma \text{-algebra of } X : \mathscr{A} \supset \mathscr{Q} \Big\}.$$

- (i) [2 points] Prove that $\sigma(\mathcal{Q})$ is a σ -algebra of X and that $\sigma(\mathcal{Q}) \supset \mathcal{Q}$.
- (ii) [2 points] Prove that $\sigma(\mathcal{Q})$ is the smallest σ -algebra of X containing \mathcal{Q} , that is, if \mathscr{A} is a σ -algebra such that $\mathscr{A} \supset \mathscr{Q}$, then $\mathscr{A} \supset \sigma(\mathscr{Q})$.

Exercise 11 (6 points). Let $n \in \mathbb{N}$ be fixed and let $\mu: \mathscr{P}(X) \to [0, +\infty]$ be an outer measure on \mathbb{R}^n . Assume that there exist two constants $C, \varepsilon > 0$ such that

$$\mu\left(B_r(x)\right) \le Cr^{n+\varepsilon}$$

for all $x \in \mathbb{R}^n$ and r > 0, where $B_r(x) = \{y \in \mathbb{R}^n : |y - x| < r\}$ is the open Euclidean ball.

- (i) We assume n = 1 first.
 - (a) [1 point] Prove that $\mu((a,b)) \leq \tilde{C}(b-a)^{1+\varepsilon}$ for all $a, b \in \mathbb{R}$, with a < b, where $\tilde{C} > 0$ is a constant depending uniquely on C and ε .
 - (b) [1 point] Prove that $\mu((a,b)) \leq \frac{\tilde{C}(b-a)^{1+\varepsilon}}{k^{\varepsilon}}$ for all $k \in \mathbb{N}$ and for all $a, b \in \mathbb{R}$, with a < b. (c) [1 point] Prove that $\mu \equiv 0$, i.e. $\mu(E) = 0$ for all $E \in \mathscr{P}(\mathbb{R})$.
- (ii) Now we assume $n \geq 2$.
 - (a) [2 points] Prove that $\mu(Q_r(x)) \leq \tilde{C}r^{n+\varepsilon}$ for all $x \in \mathbb{R}^n$ and r > 0, where $Q_r(x) =$ $(x_1 - \frac{r}{2}, x_1 + \frac{r}{2}) \times \cdots \times (x_n - \frac{r}{2}, x_n + \frac{r}{2})$ is the Euclidean box centered at $x = (x_1, \dots, x_n) \in$ \mathbb{R}^n with side length r > 0, and C > 0 is a constant depending uniquely on C and ε .
 - (b) [1 point] Prove that $\mu \equiv 0$, i.e. $\mu(E) = 0$ for all $E \in \mathscr{P}(\mathbb{R}^n)$.

Bonus (4 points). Let X and Y be two non-empty sets and let $\mathscr{B} \subset \mathscr{P}(Y)$ be a σ -algebra of Y. Let $f: X \to Y$ be a function and define

$$\sigma(f) = \{f^{-1}(S) : S \in \mathscr{B}\} \subset \mathscr{P}(X).$$

- (i) [2 points] Prove that $\sigma(f)$ is a σ -algebra of X.
- (ii) [2 points] Let $\mathscr{A} \subset \mathscr{P}(X)$ be a σ -algebra of X. Prove that $f: (X, \mathscr{A}) \to (Y, \mathscr{B})$ is measurable, that is, $f^{-1}(B) \in \mathscr{A}$ for all $B \in \mathscr{B}$, if and only if $\mathscr{A} \supset \sigma(f)$.

Giorgio Stefani

Exercise 12 (4 points). Let (X, d) be a metric space and let $C \subset X$ be non-empty and closed.

- (1) [1 point] Prove that $A_k = \{x \in X : \operatorname{dist}(x, C) < \frac{1}{k}\}$ is open for all $k \in \mathbb{N}$.
- (2) [2 points] Prove that $C = \bigcap_{k \in \mathbb{N}} A_k$.
- (3) [1 point] Prove that an open set $A \subset X$ is a countable union of closed sets.

Exercise 13 (5 points). Let $n \in \mathbb{N}$ and let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a Lipschitz function with Lipschitz constant $L \in [0, +\infty)$. Let $s \ge 0$ and let $\mathscr{H}^s : \mathscr{P}(\mathbb{R}^n) \to [0, +\infty]$ be the s-dimensional Hausdorff outer measure on \mathbb{R}^n .

- (i) [2 points] Prove that diam $(f(E)) \leq L$ diam(E) for all $E \subset \mathbb{R}^n$.
- (ii) [2 points] Prove that $\mathscr{H}^{s}(f(E)) \leq L^{s} \mathscr{H}^{s}(E)$ for all $E \subset \mathbb{R}^{n}$.
- (iii) [1 point] Find a constant $L \in (0, +\infty)$ and an *L*-Lipschitz function $f \colon \mathbb{R}^n \to \mathbb{R}^n$ such that $\mathscr{H}^s(f(E)) = L^s \mathscr{H}^s(E)$ for all $E \subset \mathbb{R}^n$.

Exercise 14 (7 points). Let (X, d) be a metric space. Let $\mathscr{F} \subset \mathscr{P}(X)$ be a family of subsets of X such that $\varnothing \in \mathscr{F}$. Let $\tau : \mathscr{F} \to [0, +\infty]$ be a function such that $\tau(\varnothing) = 0$. Given $\delta > 0$, we define $\mu_{\delta}^{\tau} : \mathscr{P}(X) \to [0, +\infty]$ as

$$\mu_{\delta}^{\tau}(A) = \inf \left\{ \sum_{k=1}^{+\infty} \tau(E_k) : (E_k)_{k \in \mathbb{N}} \subset \mathscr{F}, \ \operatorname{diam}(E_k) \le \delta \ \forall k \in \mathbb{N}, \ A \subset \bigcup_{k=1}^{+\infty} E_k \right\}$$

for all $A \subset X$.

- (i) [2 points] Prove that the limit $\mu^{\tau}(A) = \lim_{\delta \to 0^+} \mu^{\tau}_{\delta}(A) \in [0, +\infty]$ is well defined for all $A \subset X$.
- (ii) [2 points] Prove that the function $\mu^{\tau} \colon \mathscr{P}(X) \to [0, +\infty]$ is an outer measure on X.
- (iii) [2 points] Prove that the function $\mu^{\tau} \colon \mathscr{P}(X) \to [0, +\infty]$ is a metric outer measure on X, that is, if dist(A, B) > 0, then $\mu^{\tau}(A \cup B) = \mu^{\tau}(A) + \mu^{\tau}(B)$ for all $A, B \subset X$.
- (iv) [1 point] Prove that $\mu^{\tau} \colon \mathscr{P}(X) \to [0, +\infty]$ is a Borel outer measure on X.

Exercise 15 (7 points). Let $\mathscr{L}^n : \mathscr{P}(\mathbb{R}^n) \to [0, +\infty]$ be the Lebesgue outer measure on \mathbb{R}^n .

- (i) [1 point] Prove that $\mathscr{L}^1(\partial I) = 0$ for all open intervals $I \subset \mathbb{R}$.
- (ii) [2 points] Prove that $\mathscr{L}^n(\partial I) = 0$ for all open boxes $I \subset \mathbb{R}^n$.
- (iii) [3 points] Let $H = \{x \in \mathbb{R}^n : x_n = 0\}$. Prove that $\mathscr{L}^n(H) = 0$.
- (iv) [1 point] Prove that $\mathscr{L}^n(A) > 0$ for all non-empty open sets $A \subset \mathbb{R}^n$.

Bonus (2 points). Let X be a non-empty set and let $\mu: \mathscr{P}(X) \to [0, +\infty]$ be an outer measure. Prove that $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$ for all $A, B \in \text{Meas}(X; \mu)$.

Giorgio Stefani

Exercise 16 (4 points). Let (X, d) be a metric space.

- (i) [2 points] Let $(K_n)_{n \in \mathbb{N}}$ be a sequence of non-empty compact subsets of X such that $K_{n+1} \subset K_n$ for all $n \in \mathbb{N}$. Prove that $\bigcap_{n \in \mathbb{N}} K_n \neq \emptyset$.
- (ii) [2 points] Prove that $\operatorname{diam}(\mathring{A}) \leq \operatorname{diam}(A) = \operatorname{diam}(\overline{A})$ for all $A \subset X$. As usual, $\operatorname{diam}(\emptyset) = 0$.

Exercise 17 (6 points). Let $\phi: [0, +\infty) \to [0, +\infty)$ be a continuous function such that

- (a) $\phi(0) = 0;$
- (b) $s \le t \Rightarrow \phi(s) \le \phi(t)$ for all $s, t \in [0, +\infty)$;
- (c) $\phi(s+t) \le \phi(s) + \phi(t)$ for all $s, t \in [0, +\infty)$.

We define

$$\phi(+\infty) = \lim_{t \to +\infty} \phi(t) \in [0, +\infty].$$

Let X be a non-empty set and let $\mu: \mathscr{P}(X) \to [0, +\infty]$ be an outer measure.

- (i) [2 points] Find two continuous functions $\phi_1, \phi_2: [0, +\infty) \to [0, +\infty)$, satisfying points (a), (b) and (c) above, such that $\phi_1(+\infty) = +\infty$ and $\phi_2(+\infty) \in (0, +\infty)$.
- (ii) [2 points] Prove that the function $\mu_{\phi} \colon \mathscr{P}(X) \to [0, +\infty]$ defined by setting $\mu_{\phi}(A) = \phi(\mu(A))$ for all $A \subset X$ is an outer measure on X.
- (iii) [2 points] Assume that $\phi: [0, +\infty) \to [0, +\infty)$ is injective. Prove that $\operatorname{Meas}(X; \mu_{\phi}) \subset \operatorname{Meas}(X; \mu)$.

Exercise 18 (6 points). Let $s \ge 0$ and let $\mathscr{H}^s \colon \mathscr{P}(\mathbb{R}^n) \to [0, +\infty]$ be the *s*-dimensional Hausdorff outer measure on \mathbb{R}^n .

- (i) [2 points] Prove that, if s > n, then $\mathscr{H}^s(A) = 0$ for all $A \subset \mathbb{R}^n$.
- (ii) [2 points] Prove that, if $\mathscr{H}^s(A) < +\infty$ for some $A \subset \mathbb{R}^n$, then $\mathscr{H}^t(A) = 0$ for all $t \in (s, +\infty)$.
- (iii) [2 points] Prove that, if $\mathscr{H}^s(A) > 0$ for some $A \subset \mathbb{R}^n$, then $\mathscr{H}^t(A) = +\infty$ for all $t \in [0, s)$.

Bonus (4 points). Set $\aleph_0 = \operatorname{Card}(\mathbb{N})$ as usual. Let X be a set with $\operatorname{Card}(X) > \aleph_0$.

(i) [2 points] Define

$$\mathscr{A} = \Big\{ A \subset X : \text{either Card}(A) \le \aleph_0 \text{ or Card}(A^c) \le \aleph_0 \Big\}.$$

Prove that \mathscr{A} is a σ -algebra.

(ii) [2 points] Define $\mu \colon \mathscr{A} \to [0, +\infty]$ by setting

$$\mu(A) = \begin{cases} 0 & \text{if } \operatorname{Card}(A) \leq \aleph_0, \\ 1 & \text{if } \operatorname{Card}(A^c) \leq \aleph_0, \end{cases}$$

for all $A \in \mathscr{A}$. Prove that (X, \mathscr{A}, μ) is a measurable space.

Giorgio Stefani

Exercise 19 (4 points). Let X and Y be two sets and let $f: X \to Y$ be a function. Let I be an arbitrary set of indexes and assume $A_i \subset X$ and $B_i \subset Y$ for all $i \in I$. Prove the following statements.

- (i) [1 point] $f^{-1} \left(\bigcup_{i \in I} B_i \right) = \bigcup_{i \in I} f^{-1}(B_i).$ (ii) [1 point] $f^{-1} \left(\bigcap_{i \in I} B_i \right) = \bigcap_{i \in I} f^{-1}(B_i).$
- (iii) [1 point] $f\left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} f(A_i).$
- (iv) [1 point] $f(\bigcap_{i \in I} A_i) \subset \bigcap_{i \in I} f(A_i)$, with possible strict inclusion (example required).

Exercise 20 (10 points). Let $s \ge 0$ and let $\mathscr{H}^s \colon \mathscr{P}(\mathbb{R}^n) \to [0, +\infty]$ be the s-dimensional Hausdorff outer measure on \mathbb{R}^n .

(i) [2 points] Prove that \mathscr{H}^0 coincides with the counting outer measure. Precisely, $\mathscr{H}^0(A) = \mathsf{c}(A)$ for all $A \subset \mathbb{R}^n$, where $c: \mathscr{P}(\mathbb{R}^n) \to [0, +\infty]$ is defined as

$$\mathsf{c}(A) = \begin{cases} \operatorname{Card}(A) & \text{if } \operatorname{Card}(A) < +\infty, \\ +\infty & \text{otherwise} \end{cases}$$

for all $A \subset \mathbb{R}^n$. *Hint*: start by proving that $\mathscr{H}^0(\{x\}) = 1$ for all $x \in \mathbb{R}^n$.

- (ii) [2 points] Prove that, if $\mathscr{H}^s_{\delta}(A) = 0$ for some $A \subset \mathbb{R}^n$ and $\delta \in (0, +\infty)$, then $\mathscr{H}^s(A) = 0$.
- (iii) [2 points] Let $\emptyset \neq A \subset \mathbb{R}$ be such that diam $(A) < +\infty$. Prove that $-\infty < \inf A \leq \sup A < +\infty$ and that $\operatorname{diam}(A) = \sup A - \inf A$.
- (iv) [2 points] Prove that

(*)
$$\mathscr{L}^{1}(A) = \inf\left\{\sum_{k=1}^{+\infty} \operatorname{diam}(E_{k}) : A \subset \bigcup_{k=1}^{+\infty} E_{k}\right\}$$

for all $A \subset \mathbb{R}$, where $\mathscr{L}^1: \mathscr{P}(\mathbb{R}) \to [0, +\infty]$ is the Lebesgue outer measure on \mathbb{R} . Deduce that $\mathscr{L}^1(A) \leq \mathscr{H}^1(A)$ for all $A \subset \mathbb{R}$ (you may need to know that $\Gamma\left(\frac{3}{2}\right) = \frac{\sqrt{\pi}}{2}$).

(v) [2 points] Let $\delta > 0$. Exploiting (\star) and the family $(I_k^{\delta})_{k \in \mathbb{Z}}$, where $I_k^{\delta} = [k\delta, (k+1)\delta]$ for all $k \in \mathbb{Z}$, prove that $\mathscr{L}^1(A) = \mathscr{H}^1(A)$ for all $A \subset \mathbb{R}$.

Exercise 21 (4 points). Let $\dim_{\mathscr{H}}(A) \in [0, n]$ be the Hausdorff dimension of the set $A \subset \mathbb{R}^n$.

- (i) [2 points] Prove that, if $A \subset \mathbb{R}^n$ is countable, then $\dim_{\mathscr{H}}(A) = 0$.
- (ii) [2 points] Prove that, if $A, B \subset \mathbb{R}^n$, then $\dim_{\mathscr{H}}(A \cup B) = \max\{\dim_{\mathscr{H}}(A), \dim_{\mathscr{H}}(B)\}$.

Exercise 22 (4 points). Let $\mathscr{L}^n : \mathscr{P}(\mathbb{R}^n) \to [0, +\infty]$ be the Lebsegue outer measure on \mathbb{R}^n .

(i) [2 points] Let $E \subset \mathbb{R}^n$. Prove that $E \in \text{Meas}(\mathbb{R}^n; \mathscr{L}^n)$ if and only if $\mathbf{1}_E : \mathbb{R}^n \to \mathbb{R}$ is \mathscr{L}^n measurable, where

$$\mathbf{1}_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

for all $x \in \mathbb{R}^n$.

(ii) [2 points] Prove that the function $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} \pi \min\{x^2, 3\} & x \in \mathbb{Q} \\ -\sqrt{2}x & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

is \mathscr{L}^1 -measurable.

Giorgio Stefani

Exercise 23 (4 points). Let (X, d) be a metric space. Let $A, B \subset X$ and let $f: X \to \mathbb{R}$ be a function.

- (i) [3 points] Assume that dist(A, B) > 0. Prove that, if the functions $f: A \to \mathbb{R}$ and $f: B \to \mathbb{R}$ are continuous, then also $f: A \cup B \to \mathbb{R}$ is continuous.
- (ii) [1 point] Is the implication in (i) still true if we only assume that $A \cap B = \emptyset$? If yes, then prove it. If no, then give an explicit counterexample.

Exercise 24 (3 points). Let X be a non-empty set and let $\mu: \mathscr{P}(X) \to [0, +\infty]$ be an outer measure on X. Assume that $f_k: X \to \mathbb{R}$ is μ -measurable for all $k \in \mathbb{N}$. Prove that the sets

$$\left\{x \in X : \exists \lim_{k \to +\infty} f_k(x) \in \mathbb{R}\right\}, \quad \left\{x \in X : \lim_{k \to +\infty} f_k(x) = +\infty\right\}, \quad \left\{x \in X : \lim_{k \to +\infty} f_k(x) = -\infty\right\},$$

are μ -measurable.

Exercise 25 (4 points). Let $\mu: \mathscr{P}(\mathbb{R}^n) \to [0, +\infty]$ be Radon outer measure on \mathbb{R}^n . Let $f_k: \mathbb{R}^n \to \mathbb{R}$ be a μ -measurable function for all $k \in \mathbb{N}$. Assume that

(a) $E \in \text{Meas}(\mathbb{R}^n; \mu)$ with $\mu(E) < +\infty$;

(b) for each $x \in E$ there is a constant $M_x \in \mathbb{R}$ such that $|f_k(x)| \leq M_x$ for all $k \in \mathbb{N}$.

- Prove that, for each $\varepsilon > 0$, there exist a set $F_{\varepsilon} \subset E$ and a constant $M_{\varepsilon} \in \mathbb{R}$ such that
 - (i) F_{ε} is closed and $\mu(E \setminus F_{\varepsilon}) < \varepsilon$;
 - (ii) $|f_k(x)| \leq M_{\varepsilon}$ for all $x \in F_{\varepsilon}$ and all $k \in \mathbb{N}$.

Exercise 26 (4 points). Let $\mu: \mathscr{P}(\mathbb{R}^n) \to [0, +\infty]$ be a Borel outer measure on \mathbb{R}^n . Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function. Assume that, if $\varepsilon > 0$, then there exists a closed set $C \subset \mathbb{R}^n$ such that $\mu(\mathbb{R}^n \setminus C) < \varepsilon$ and $f: C \to \mathbb{R}$ is continuous. Prove that $f: \mathbb{R}^n \to \mathbb{R}$ is μ -measurable.

Bonus (4 points). Let $\mathscr{L}^n : \mathscr{P}(\mathbb{R}^n) \to [0, +\infty]$ be the Lebesgue outer measure. Find an \mathscr{L}^2 -measurable set $E \subset \mathbb{R}^2$ and a smooth and Lipschitz function $f : \mathbb{R}^2 \to \mathbb{R}$ such that $f(E) \subset \mathbb{R}$ is not \mathscr{L}^1 -measurable.

Giorgio Stefani

Exercise 27 (6 points + 2 bonus points). Let $f: [0,1] \to \mathbb{R}$ be a bounded function. We let $\omega(f, I) = \sup\{f(x) - f(y) : x, y \in I\}$

be the oscillation of the function f on the interval $I \subset [0, 1]$. We also let

$$\omega(f, x) = \lim_{r \to 0^+} \omega(f, I_r(x))$$

be the local oscillation of the function f at $x \in [0, 1]$, where $I_r(x) = \{y \in [0, 1] : |y - x| < r\}$.

(i) [1 point] Prove that $\omega(f, x) = \inf_{r>0} \omega(f, I_r(x))$ for all $x \in [0, 1]$. (ii) [1 point] Prove that $x \mapsto \omega(f, x)$ is upper semicontinuous on [0, 1], that is,

$$\limsup_{y\to x} \omega(f,y) \le \omega(f,x) \quad \text{for all } x\in [0,1].$$

- (iii) [2 points] Prove that f is continuous at $x \in [0, 1]$ if and only if $\omega(f, x) = 0$.
- (iv) [2 points] Assume that $\omega(f, x) < \varepsilon$ for all $x \in [0, 1]$ for some $\varepsilon > 0$. Prove that there exists $\delta > 0$ such that $\omega(f, I) < \varepsilon$ for all intervals $I \subset [0, 1]$ such that $\mathscr{L}^1(I) < \delta$.
- (v) [2 bonus points] Let $D(f) = \{x \in [0,1] : \omega(f,x) > 0\}$. Prove that, if $\mathscr{L}^1(D(f)) = 0$, then f is \mathscr{L}^1 -measurable on [0,1].

Exercise 28 (4 points). Let $f: X \to [0, +\infty]$ be a μ -measurable function.

- (i) [2 points] Prove that $\mu(\{x \in X : f(x) > t\}) \leq \frac{1}{t} \int_X f \, d\mu$ for all t > 0.
- (ii) [2 points] Prove that, if $\int_X f d\mu < +\infty$, then $f(x) < +\infty$ for μ -a.e. $x \in X$.

Exercise 29 (4 points). Let $f \in \mathbb{R} \to \mathbb{R}$ be a \mathscr{L}^1 -measurable such that $\int_{\mathbb{R}} |f| d\mathscr{L}^1 < +\infty$. Let $c \in \mathbb{R}$. Prove that the function $F_c \colon \mathbb{R} \to \mathbb{R}$ defined by $F_c(t) = \int_{[c,t]^*} f d\mathscr{L}^1$ for all $t \in \mathbb{R}$, where $[c,t]^* = \{x \in \mathbb{R} : c \land t \le x \le c \lor t\}$, is well defined and continuous on \mathbb{R} .

Exercise 30 (4 points). Let $f_k: X \to [0, +\infty]$ be a non-negative μ -measurable function for all $k \in \mathbb{N}$. Assume that there exists a function $f: X \to [0, +\infty]$ such that

(a) $\lim_{k \to +\infty} f_k(x) = f(x)$ for μ -a.e. $x \in X$;

(b) $f_k(x) \leq f(x)$ for μ -a.e. $x \in X$ and all $k \in \mathbb{N}$.

Prove that $\lim_{k \to +\infty} \int_X f_k d\mu = \int_X f d\mu$.

Bonus (4 points). Let $f: X \to [0, +\infty]$ be a non-negative μ -measurable function. Prove that the function $\nu \colon \text{Meas}(X;\mu) \to [0,+\infty]$, defined as

$$\nu(A) = \int_A f \, d\mu$$

for all $A \in Meas(X; \mu)$, is a measure.

Giorgio Stefani

Exercise 31 (6 points).

- (i) [2 points] Let $f, g: \mathbb{R}^n \to \mathbb{R}$ be two continuous functions. Prove that, if $f = g \mathscr{L}^n$ -a.e. on \mathbb{R}^n , then f = g everywhere on \mathbb{R}^n .
- (ii) [2 points] Let $f, g \in \mathcal{L}^1(X, \mu)$. Prove that $f = g \mu$ -a.e. on X if and only if $\int_E f d\mu = \int_E g d\mu$ for all $E \in \text{Meas}(X; \mu)$.
- (iii) [2 points] Set $\aleph_0 = \operatorname{Card}(\mathbb{N})$ as usual. Let X be a set with $\operatorname{Card}(X) > \aleph_0$. Consider

$$\mathscr{A} = \left\{ A \subset X : \text{either Card}(A) \le \aleph_0 \text{ or Card}(A^c) \le \aleph_0 \right\}$$

and define $\mu: \mathscr{A} \to [0, +\infty]$ by setting

$$\mu(A) = \begin{cases} 0 & \text{if } \operatorname{Card}(A) \leq \aleph_0 \\ +\infty & \text{if } \operatorname{Card}(A^c) \leq \aleph_0 \end{cases}$$

for all $A \in \mathscr{A}$. Prove that (X, \mathscr{A}, μ) is a measurable space [1 point] and find two μ -measurable functions $f, g: X \to [0, +\infty]$ such that $\int_A f \, d\mu = \int_A g \, d\mu$ for all $A \in \mathscr{A}$ but $f(x) \neq g(x)$ for all $x \in X$ [1 point].

Exercise 32 (4 points). Let $f_k: X \to [-\infty, +\infty]$ be a μ -measurable function for all $k \in \mathbb{N}$ and let $g \in \mathcal{L}^1(X, \mu)$. Prove that, if $f_k \leq g \mu$ -a.e. on X for all $k \in \mathbb{N}$, then

$$\limsup_{k \to +\infty} \int_X f_k \, d\mu \le \int_X \limsup_{k \to +\infty} f_k \, d\mu$$

Exercise 33 (4 points). Let $f_k \in \mathcal{L}^1(X, \mu)$ be such that $f_k \ge 0$ μ -a.e. on X for all $k \in \mathbb{N}$. Assume that

$$\lim_{k \to +\infty} f_k = f \ \mu\text{-a.e. on } X \quad \text{and} \quad \lim_{k \to +\infty} \int_X f_k \, d\mu = \int_X f \, d\mu < +\infty.$$

$$\inf_{X} \int_X |f_k - f| \, d\mu = 0.$$

Prove that $\lim_{k \to +\infty} \int_X |f_k - f| d\mu = 0$

Exercise 34 (4 points). Let $f: X \to \mathbb{R}$ be an μ -measurable function such that $f \ge 0$ μ -a.e. on X. Assume that there exists $\alpha \in [0, +\infty)$ such that $\int_X f(x)^k d\mu(x) = \alpha$ for all $k \in \mathbb{N}$. Prove that $f = \mathbf{1}_E$ μ -a.e. on X for some $E \in \text{Meas}(X; \mu)$ with $\mu(E) = \alpha$.

Bonus (4 points). Let X be an non-empty set and let $\mathscr{R} \subset \mathscr{P}(X)$ be a semiring on X. Let $\mu : \mathscr{R} \to [0, +\infty]$ be a measure on \mathscr{R} .

- (1) [2 points] Let $A, B_1, \ldots, B_m \in \mathscr{R}$. Prove that there exist disjoint sets $C_1, \ldots, C_n \in \mathscr{R}$ such that $A \setminus \bigcup_{i=1}^m B_i = \bigsqcup_{j=1}^n C_j$.
- (2) [2 points] Let $A_1, \ldots, A_n \in \mathscr{R}$ be disjoint and assume that $\bigsqcup_{k=1}^n A_k \subset A$ for some $A \in \mathscr{R}$. Prove that $\sum_{k=1}^n \mu(A_k) \leq \mu(A)$.

Giorgio Stefani

Exercise 35 (6 points). Let $f: X \to [0, +\infty]$ be a non-negative μ -measurable function and let $(A_k)_{k \in \mathbb{N}}$ be a sequence of μ -measurable sets.

- (i) [1 point] Define $\gamma(x) = \sum_{k=1}^{+\infty} \mathbf{1}_{A_k}(x)$ for all $x \in X$. Prove that $\gamma: X \to [0, +\infty]$ is μ -measurable.
- (ii) [2 points] Let $A = \bigcup_{k=1}^{+\infty} A_k$. Prove that $\int_A f \, d\mu \leq \int_A f \gamma \, d\mu = \sum_{k=1}^{+\infty} \int_{A_k} f \, d\mu$.
- (iii) [2 points] Assume $M = \sup_{x \in X} \gamma(x) < +\infty$. Prove that $\sum_{k=1}^{+\infty} \int_{A_k} f \, d\mu \le M \int_A f \, d\mu$.

(iv) [1 point] Prove that
$$\sum_{k=1}^{+\infty} \mu(A_k) \le M\mu\left(\bigcup_{k=1}^{+\infty} A_k\right)$$

Exercise 36 (5 points). Let $(f_k)_{k \in \mathbb{N}} \subset \mathcal{L}^1(X, \mu)$ be a sequence of μ -integrable functions such that $\sum_{k=1}^{+\infty} \int_X |f_k| d\mu < +\infty$.

- (i) [2 points] Prove that $f(x) = \sum_{k=1}^{+\infty} f_k(x) = \lim_{m \to +\infty} \sum_{k=1}^{m} f_k(x)$ exists and is finite for μ -a.e. $x \in X$.
- (ii) [2 points] Prove that $f \in \mathcal{L}^1(X,\mu)$ and that $\lim_{m \to +\infty} \int_X \left| f \sum_{k=1}^m f_k \right| d\mu = 0.$
- (iii) [1 point] Prove that $\int_X f \, d\mu = \sum_{k=1}^{+\infty} \int_X f_k \, d\mu$.

Exercise 37 (4 points). Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function $f(x, y) = ye^{-(1+x^2)y^2}$ for $x, y \in \mathbb{R}$. Apply the Fubini–Tonelli's Theorem to the integral

$$I = \int_{\mathbb{R} \times [0, +\infty)} f(x, y) \, d(\mathscr{L}^1 \otimes \mathscr{L}^1)(x, y)$$

to show that $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$.

Exercise 38 (4 points). Let $f: X \to [0, +\infty]$ be a non-negative μ -measurable function. Define the set $G_f = \{(x, t) \in X \times \mathbb{R} : 0 \le t < f(x)\} \subset X \times \mathbb{R}$.

- (i) [2 points] Prove that $G_f \in \text{Meas}(X \times \mathbb{R}; \mu \otimes \mathscr{L}^1)$.
- (ii) [2 points] Prove that $(\mu \otimes \mathscr{L}^1)(G_f) = \int_X f \, d\mu \in [0, +\infty].$

Bonus (4 points). Let $f \in \mathcal{L}^1(X, \mu)$ be a μ -integrable function. Prove that there exists a sequence $(\varphi_k)_{k \in \mathbb{N}}$ of simple functions $\varphi_k \colon X \to \mathbb{R}, k \in \mathbb{N}$, such that $\lim_{k \to +\infty} \int_X |f - \varphi_k| d\mu = 0$.

Giorgio Stefani

Exercise 39 (4 points). Let (X, \mathscr{A}, μ) be a measurable space.

- (i) [2 points] Let $p, q, r \in [1, +\infty]$ be such that $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$. Prove that, if $f \in \mathcal{L}^p(X, \mu)$ and $f \in \mathcal{L}^q(X, \mu)$, then $fg \in \mathcal{L}^r(X, \mu)$ with $\|fg\|_{\mathcal{L}^r} \le \|f\|_{\mathcal{L}^p} \|g\|_{\mathcal{L}^q}$. (ii) [2 points] Let $m \in \mathbb{N}$ and let $p_1, \ldots, p_m, r \in [1, +\infty]$ be such that $\frac{1}{p_1} + \cdots + \frac{1}{p_m} = \frac{1}{r}$. Prove that, if $f_k \in \mathcal{L}^{p_k}(X, \mu)$ for all $k = 1, \ldots, m$, then $\prod_{k=1}^m f_k \in \mathcal{L}^r(X, \mu)$ with $\|\prod_{k=1}^m f_k\|_{\mathcal{L}^r} \le \prod_{k=1}^m \|f_k\|_{\mathcal{L}^{p_k}}$.

Exercise 40 (4 points). Let $\mu: \mathscr{P}(\mathbb{R}) \to [0, +\infty]$ be a Borel outer measure such that $\mu(\mathbb{R}) = 1$. Prove that

$$\mathscr{L}^{1}(E) = \int_{\mathbb{R}} \mu(x+E) \, dx$$

for all Borel sets $E \subset \mathbb{R}$.

Exercise 41 (4 points). Let (X, \mathscr{A}, μ) be a measurable space with $\mu(X) < +\infty$. Let $f: X \to [0, +\infty]$ be a μ -measurable function, not μ -a.e. equal to the null function, such that $f \in \mathcal{L}^p(X,\mu)$ for all $p \in [1, +\infty)$. Prove that

$$\lim_{p \to +\infty} \frac{\|f\|_{\mathcal{L}^{p+1}}^{p+1}}{\|f\|_{\mathcal{L}^p}^p} = \|f\|_{\mathcal{L}^{\infty}}.$$

Exercise 42 (4 points). Let $\varphi: [0,1] \to \mathbb{R}$ be continuous function such that $\varphi(x) > 0$ for all $x \in [0,1]$. Prove that

$$\lim_{p \to +\infty} \left(\int_{[0,1]} |f|^p \, \varphi \, d\mathscr{L}^1 \right)^{\frac{1}{p}} = \|f\|_{\mathcal{L}^{\infty}}$$

for all $f \in \mathcal{L}^1([0,1], \mathscr{L}^1)$.

Bonus (2 points). Find $f \colon \mathbb{R}^n \to \mathbb{R}$ such that $f \in \bigcap_{p \in [1, +\infty)} \mathcal{L}^p(\mathbb{R}^n, \mathscr{L}^n) \setminus \mathcal{L}^\infty(\mathbb{R}^n, \mathscr{L}^n)$.

Giorgio Stefani

Exercise 43 (4 points). Let (X, \mathscr{A}, μ) be a measurable space. Let $(A_k)_{k \in \mathbb{N}} \subset \mathscr{A}$ be a sequence of pairwise disjoint sets such that $\mu(A_k) \in (0, +\infty)$ for all $k \in \mathbb{N}$. Let $1 \leq p < q < +\infty$.

- (i) [2 points] Assume that there exists a subsequence $(A_{k_j})_{j\in\mathbb{N}}$ such that $\lim_{j\to+\infty} \mu(A_{k_j}) = 0$. Prove that $L^p(X,\mu) \setminus L^q(X,\mu) \neq \emptyset$.
- (ii) [2 points] Assume that there exists a subsequence $(A_{k_j})_{j \in \mathbb{N}}$ such that $\inf_{j \in \mathbb{N}} \mu(A_{k_j}) > 0$. Prove that $L^q(X, \mu) \setminus L^p(X, \mu) \neq \emptyset$.

Exercise 44 (4 points). Let (X, \mathscr{A}, μ) be a measurable space. Prove that the following statements are equivalent.

- (i) There exists a sequence $(A_k)_{k\in\mathbb{N}}\subset\mathscr{A}$ such that $\mu(A_k)>0$ for all $k\in\mathbb{N}$ and $\lim_{k\to+\infty}\mu(A_k)=0$.
- (ii) There exists a sequence $(B_k)_{k \in \mathbb{N}} \subset \mathscr{A}$ such that $0 < \mu(B_k) \leq \frac{1}{2^k}$ for all $k \in \mathbb{N}$.
- (iii) $L^1(X,\mu) \setminus L^\infty(X,\mu) \neq \emptyset$.
- (iv) There exists a sequence $(C_k)_{k \in \mathbb{N}} \subset \mathscr{A}$ of pairwise disjoint sets such that $0 < \mu(C_k) \leq \frac{1}{2^k}$ for all $k \in \mathbb{N}$.

Exercise 45 (4 points). Let $p \in [1, +\infty]$. Prove that $(L^p(\mathbb{R}^n, \mathscr{L}^n), \|\cdot\|_p)$ is a Hilbert space if [2 points] and only if [2 points] p = 2.

Exercise 46 (4 points). Let (X, \mathscr{A}, μ) be a measurable space and let $p \in [1, +\infty)$. Assume that $(f_k)_{k \in \mathbb{N}} \subset L^p(X, \mu)$ and $f \in L^p(X, \mu)$ are such that

- (i) $\lim_{k \to +\infty} f_k(x) = f(x)$ for μ -a.e. $x \in X$;
- (ii) $\lim_{k \to +\infty} ||f_k||_p = ||f||_p.$

Prove that $\lim_{k \to +\infty} ||f_k - f||_p = 0.$

Bonus (2 points). Let (X, \mathscr{A}, μ) be a measurable space. Let $1 \leq p < q < r \leq +\infty$. Prove that $L^q(X, \mu) \subset L^p(X, \mu) + L^r(X, \mu)$, that is, if $f \in L^q(X, \mu)$, then $f = f_1 + f_2$ for some $f_1 \in L^p(X, \mu)$ and $f_2 \in L^r(X, \mu)$.

Giorgio Stefani

Exercise 47. Let (X, \mathscr{A}, μ) be a measurable space and let $p \in [1, +\infty)$. Let $(f_k)_{k \in \mathbb{N}} \subset L^p(X, \mu)$ be such that $f_k \to f$ in $L^p(X, \mu)$ as $k \to +\infty$ for some $f \in L^p(X, \mu)$. Prove that $f_k \to f$ in measure as $k \to +\infty$.

Exercise 48. Let (X, \mathscr{A}, μ) be a measurable space such that $\mu(X) = 1$. Let $\varphi : [0, +\infty) \to [0, +\infty)$ be a continuous, convex and monotone increasing function and define $\varphi(+\infty) = +\infty$. Prove that

$$\varphi\left(\int_X f \, d\mu\right) \le \int_X \varphi(f) \, d\mu$$

for all non-negative measurable functions $f: X \to [0, +\infty]$.

Exercise 49. Let (X, \mathscr{A}, μ) be a measurable space such that $\mu(X) < +\infty$. Let $p \in (1, +\infty)$ and let $(f_k)_{k \in \mathbb{N}} \subset L^p(X, \mu)$ be such that $M = \sup_{k \in \mathbb{N}} ||f_k||_p < +\infty$. Assume that $f_k \to f$ μ -a.e. in X as $k \to +\infty$ for some measurable function $f: X \to [-\infty, +\infty]$.

- (i) Prove that $f \in L^p(X, \mu)$ with $||f||_p \leq M$.
- (ii) Prove that, for all $\varepsilon > 0$, there exists $\delta > 0$ such that

$$E \in \mathscr{A} \text{ with } \mu(E) < \delta \implies \sup_{k \in \mathbb{N}} \int_{E} |f_k - f|^q \, d\mu < \varepsilon.$$

- (iii) Prove that $f_k \to f$ in $L^q(X, \mu)$ as $k \to +\infty$ for all $q \in [1, p)$.
- (iv) Prove that one cannot take q = p in the previous point with a counterexample.

Exercise 50. Let (X, \mathscr{A}, μ) be a measurable space such that $\mu(X) < +\infty$. Let $p \in (1, +\infty)$ and let $(f_k)_{k \in \mathbb{N}} \subset L^p(X, \mu)$ be such that $M = \sup_{k \in \mathbb{N}} ||f_k||_p < +\infty$. Assume that $f_k \to f$ in measure as $k \to +\infty$ for some measurable function $f: X \to [-\infty, +\infty]$.

- (i) Prove that $f \in L^p(X, \mu)$ with $||f||_p \le M$.
- (ii) Prove that $\lim_{k \to +\infty} \int_{\{|f_k f| \ge \varepsilon\}} g \, d\mu = 0$ for all $\varepsilon > 0$ and all $g \in L^1(X, \mu)$.
- (iii) Prove that $f_k \to f$ weakly in $L^p(X, \mu)$ as $k \to +\infty$.
- (iv) Prove that one cannot take p = 1 in the previous point with a counterexample.

Extra exercises

Giorgio Stefani

Exercise 51. Let $f: \mathbb{R} \to \mathbb{R}$ be a Lebesgue measurable function. Assume that

$$\sup_{k \in \mathbb{N}} \int_{\mathbb{R}} |x|^k |f(x)| \, dx < +\infty.$$

Is it true that f(x) = 0 for \mathscr{L}^1 -a.e. $x \in \mathbb{R} \setminus [-1,1]$? If yes, then prove it. If no, then give a counterexample.

Exercise 52. Let (X, \mathscr{A}, μ) be a measurable space. Let $f, f_k \in L^1(X, \mu), k \in \mathbb{N}$, be such that $f_k \to f$ strongly in $L^1(X,\mu)$ as $k \to +\infty$. Let $(A_k)_{k\in\mathbb{N}} \subset \mathscr{A}$ be such that $\mu(A_k) \to 0$ as $k \to +\infty$. Prove that $\lim_{k \to +\infty} \int_{A_k} f_k \, d\mu = 0.$

Exercise 53. Let (X, \mathscr{A}, μ) be a measurable space with $\mu(X) < +\infty$. Let $f, f_k \colon X \to [-\infty, +\infty]$, $k \in \mathbb{N}$, be μ -measurable functions. Prove that the following two statements are equivalent.

- (A) $f_k \to f$ in measure as $k \to +\infty$.
- (B) $\lim_{k \to +\infty} \int_X 1 \wedge |f_k f| \, d\mu = 0.$

Exercise 54. Let $(f_k)_{k\in\mathbb{N}} \subset L^2([0,1])$ be such that $||f_k||_{L^2([0,1])} \leq \sqrt{2}$ for all $k \in \mathbb{N}$. Assume that $f_k \to 0$ in measure as $k \to +\infty$.

(i) Fix $\eta > 0$ and define $g_{\eta,k} = \mathbf{1}_{\{|f_k| > \eta\}}$ for all $k \in \mathbb{N}$. Prove that

$$\lim_{k \to +\infty} \int_{[0,1]} g_{\eta,k} \,\varphi \, dx = 0$$

for all $\varphi \in L^1([0,1])$.

(ii) Prove that $f_k \to 0$ weakly in $L^2([0,1])$ as $k \to +\infty$.

Exercise 55. Let (X, \mathscr{A}, μ) be a σ -finite measurable space. Let $f: X \to [0, +\infty]$ be a non-negative μ -measurable function. Prove that, if $\mu(\{x \in X : f(x) > t\}) \ge \frac{1}{1+t}$ for all $t \ge 0$, then $f \notin L^1(X, \mu)$.

Exercise 56. Let $(f_k)_{k\in\mathbb{N}} \subset L^3([0,1])$ be such that $||f_k||_{L^3([0,1])} \leq 2$ for all $k \in \mathbb{N}$. Assume that $f_k \to 0$ \mathscr{L}^1 -a.e. on [0,1] as $k \to +\infty$.

- (i) Prove that $f_k \in L^2([0,1])$ for all $k \in \mathbb{N}$.
- (ii) Let $g_k = f_k^2$ for all $k \in \mathbb{N}$. Prove that $(g_k)_{k \in \mathbb{N}} \subset L^1([0,1])$ is uniformly integrable. (iii) Prove that $f_k \to 0$ strongly in $L^2([0,1])$ as $k \to +\infty$.

Exercise 57. Let $E, E_k \subset [0,1], k \in \mathbb{N}$, be Lebesgue measurable sets. Prove that the following two statements are equivalent for any fixed $p \in [1, +\infty)$.

- (A) $\mathbf{1}_{E_k} \to \mathbf{1}_E$ strongly in $L^p([0,1])$ as $k \to +\infty$.
- (B) $\mathbf{1}_{E_k} \to \mathbf{1}_E$ weakly in $L^p([0,1])$ as $k \to +\infty$.