Exercises for week 1

Giorgio Stefani

Exercise 1 (4 points +2 bonus points).
(i) $[2$ points $]$ Let $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow[0,+\infty)$ be defined by

$$
d(x, y)= \begin{cases}|x-y| & \text { if } x, y \text { and } 0 \text { are collinear, } \\ |x|+|y| & \text { otherwise }\end{cases}
$$

for all $x, y \in \mathbb{R}^{2}$. Prove that $\left(\mathbb{R}^{2}, d\right)$ is a metric space. Is $\left(\mathbb{R}^{2}, d\right)$ complete? Motivate your answer.
(ii) [2 points +2 bonus points] Let $d: \mathbb{N} \times \mathbb{N} \rightarrow[0,+\infty)$, where $\mathbb{N}=\{1,2,3, \ldots\}$, be defined by

$$
d(m, n)=\left|\frac{1}{m}-\frac{1}{n}\right| \quad \text { for all } m, n \in \mathbb{N}
$$

(a) [2 points] Prove that (\mathbb{N}, d) is a metric space and that is not complete.
(b) [2 bonus points] Find a completion of (\mathbb{N}, d).

Exercise 2 (4 points). Let $a, b \in \mathbb{R}$, with $a<b$, and let $X=C([a, b] ; \mathbb{R})$ be the set of continuous functions $f:[a, b] \rightarrow \mathbb{R}$.
(i) [2 points] Let $d: X \times X \rightarrow[0,+\infty)$ be defined as

$$
d(f, g)=\int_{a}^{b}|f(x)-g(x)| \mathrm{d} x
$$

for all $f, g \in X$. Prove that (X, d) is a metric space.
(ii) [2 points] Is (X, d) complete? Motivate your answer.

Exercise 3 (4 points). Let X be a non-empty set and let (Y, d) be a metric space. Assume that $\varphi: X \rightarrow Y$ is injective. Let $d_{\varphi}: X \times X \rightarrow \mathbb{R}$ be defined as

$$
d_{\varphi}\left(x, x^{\prime}\right)=d\left(\varphi(x), \varphi\left(x^{\prime}\right)\right) \quad \text { for all } x, x^{\prime} \in X
$$

(i) [1 point] Prove that $\left(X, d_{\varphi}\right)$ is a metric space.
(ii) [3 points] Prove that $\left(X, d_{\varphi}\right)$ is complete if and only if $(\varphi(X), d)$ is complete.

Exercise 4 (4 points). Let $A, B \subset \mathbb{R}^{n}$ be two non-empty sets. Let us define

$$
\operatorname{dist}(A, B)=\inf \{|x-y|: x \in A, y \in B\}
$$

(i) [2 points] Prove that if A is compact and B is closed and $A \cap B=\varnothing$, then $d(A, B)>0$.
(ii) [2 points] Is it true that $d(A, B)>0$ for all $A, B \subset \mathbb{R}^{n}$ non-empty, closed and such that $A \cap B=\varnothing$? If yes, then prove the statement. If no, then give a counterexample.

Exercises for week 2

Giorgio Stefani

Exercise 5 (4 points). Let (X, d) be a compact metric space. Assume that $T: X \rightarrow X$ satisfies

$$
d(T(x), T(y))<d(x, y) \quad \text { for all } x, y \in X, x \neq y .
$$

(i) [1 point] Prove that, if $x, y \in X$ are fix points of the map T, then $x=y$.
(ii) [1 point] Prove that the map $f: X \rightarrow \mathbb{R}$, defined as $f(x)=d(T(x), x)$ for all $x \in X$, is continuous.
(iii) [2 points] Prove that the map T has a unique fix point $\bar{x} \in X$.

Exercise 6 (4 points). Let (X, d) be a metric space and let $A \subset X$. Let $L>0$ and let $f: A \rightarrow \mathbb{R}$ be an L-Lipschitz function on A, that is, such that

$$
|f(x)-f(y)| \leq L d(x, y) \quad \text { for all } x, y \in A .
$$

Prove the following two statements.
(i) [2 points] There exists an L-Lipschitz function $F: X \rightarrow \mathbb{R}$ on X such that $\left.F\right|_{A}=f$.
(ii) [2 points] There exist two L-Lipschitz functions $m, M: X \rightarrow \mathbb{R}$ on X such that $\left.m\right|_{A}=\left.M\right|_{A}=f$ and with the following property: if $g: X \rightarrow \mathbb{R}$ is an L-Lipschitz function on X such that $\left.g\right|_{A}=f$, then $m \leq g \leq M$ on X.

Exercise 7 (4 points). Let (X, d) be a metric space. Recall that the diameter of a non-empty set $A \subset X$ is defined as $\operatorname{diam}(A)=\sup \{d(x, y): x, y \in A\}$.
(i) [3 points] Let $\left(C_{n}\right)_{n \in \mathbb{N}}$ be a sequence of subsets of X such that:
(a) C_{n} is non-empty and closed for all $n \in \mathbb{N}$;
(b) $C_{n+1} \subset C_{n}$ for all $n \in \mathbb{N}$;
(c) $\lim _{n \rightarrow+\infty} \operatorname{diam}\left(C_{n}\right)=0$.

Prove that, if (X, d) is complete, then there exists a unique $x \in X$ such that $\bigcap_{n \in \mathbb{N}} C_{n}=\{x\}$.
(ii) [1 point] Find a metric space (X, d) and a sequence $\left(C_{n}\right)_{n \in \mathbb{N}}$ of subsets of X satisfying properties (a), (b) and (c) of the previous point and such that $\bigcap_{n \in \mathbb{N}} C_{n}=\varnothing$.

Exercise 8 (4 points). Let $p \in[1,+\infty]$ and let $\left(\ell^{p}(\mathbb{N}),\|\cdot\|_{\ell^{p}(\mathbb{N})}\right)$ be the Banach space of p-summable real sequences. Prove that $\left(\ell^{p}(\mathbb{N}),\|\cdot\|_{\ell^{p}(\mathbb{N})}\right)$ is a Hilbert space if [2 points] and only if [2 points] $p=2$.

Bonus (4 points). Let us define

$$
\mathcal{S}(\mathbb{R})=\left\{f \in C^{\infty}(\mathbb{R}): \sup _{x \in \mathbb{R}}|x|^{m}\left|f^{(n)}(x)\right|<+\infty \text { whenever } m, n \in \mathbb{N}_{0}\right\},
$$

where $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}, C^{\infty}(\mathbb{R})$ is the set of infinitely differentiable functions and $f^{(n)}$ denotes the n-th derivative of f. Prove that, if $f \in \mathcal{S}(\mathbb{R})$, then $f^{(n)}$ is uniformly continuous on \mathbb{R} for all $n \in \mathbb{N}_{0}$.

Exercises for week 3

Giorgio Stefani

Exercise 9 (4 points). Let (X, \mathscr{A}, μ) be a measurable space. A point $x \in X$ is called an atom of μ if $\{x\} \in \mathscr{A}$ and $\mu(\{x\})>0$. From now on, we assume $\mu(X)<+\infty$.
(i) [2 points] Prove that the set

$$
A_{n}=\left\{x \in X: x \text { is an atom of } \mu \text { with } \mu(\{x\}) \geq \frac{\mu(X)}{n}\right\}
$$

is finite for all $n \in \mathbb{N}$.
(ii) [2 points] Prove that the set $A=\{x \in X: x$ is an atom of $\mu\}$ is at most countable.

Exercise 10 (4 points). Let X be a non-empty set and let $\mathscr{Q} \subset \mathscr{P}(X)$. We define

$$
\sigma(\mathscr{Q})=\bigcap\{\mathscr{A} \text { is a } \sigma \text {-algebra of } X: \mathscr{A} \supset \mathscr{Q}\} .
$$

(i) [2 points] Prove that $\sigma(\mathscr{Q})$ is a σ-algebra of X and that $\sigma(\mathscr{Q}) \supset \mathscr{Q}$.
(ii) [2 points] Prove that $\sigma(\mathscr{Q})$ is the smallest σ-algebra of X containing \mathscr{Q}, that is, if \mathscr{A} is a σ-algebra such that $\mathscr{A} \supset \mathscr{Q}$, then $\mathscr{A} \supset \sigma(\mathscr{Q})$.

Exercise 11 (6 points). Let $n \in \mathbb{N}$ be fixed and let $\mu: \mathscr{P}(X) \rightarrow[0,+\infty]$ be an outer measure on \mathbb{R}^{n}.
Assume that there exist two constants $C, \varepsilon>0$ such that

$$
\mu\left(B_{r}(x)\right) \leq C r^{n+\varepsilon}
$$

for all $x \in \mathbb{R}^{n}$ and $r>0$, where $B_{r}(x)=\left\{y \in \mathbb{R}^{n}:|y-x|<r\right\}$ is the open Euclidean ball.
(i) We assume $n=1$ first.
(a) [1 point] Prove that $\mu((a, b)) \leq \tilde{C}(b-a)^{1+\varepsilon}$ for all $a, b \in \mathbb{R}$, with $a<b$, where $\tilde{C}>0$ is a constant depending uniquely on C and ε.
(b) [1 point] Prove that $\mu((a, b)) \leq \frac{\tilde{C}(b-a)^{1+\varepsilon}}{k^{\varepsilon}}$ for all $k \in \mathbb{N}$ and for all $a, b \in \mathbb{R}$, with $a<b$.
(c) [1 point] Prove that $\mu \equiv 0$, i.e. $\mu(E)=0$ for all $E \in \mathscr{P}(\mathbb{R})$.
(ii) Now we assume $n \geq 2$.
(a) [2 points] Prove that $\mu\left(Q_{r}(x)\right) \leq \tilde{C} r^{n+\varepsilon}$ for all $x \in \mathbb{R}^{n}$ and $r>0$, where $Q_{r}(x)=$ $\left(x_{1}-\frac{r}{2}, x_{1}+\frac{r}{2}\right) \times \cdots \times\left(x_{n}-\frac{r}{2}, x_{n}+\frac{r}{2}\right)$ is the Euclidean box centered at $x=\left(x_{1}, \ldots, x_{n}\right) \in$ \mathbb{R}^{n} with side length $r>0$, and $\tilde{C}>0$ is a constant depending uniquely on C and ε.
(b) [1 point] Prove that $\mu \equiv 0$, i.e. $\mu(E)=0$ for all $E \in \mathscr{P}\left(\mathbb{R}^{n}\right)$.

Bonus (4 points). Let X and Y be two non-empty sets and let $\mathscr{B} \subset \mathscr{P}(Y)$ be a σ-algebra of Y. Let $f: X \rightarrow Y$ be a function and define

$$
\sigma(f)=\left\{f^{-1}(S): S \in \mathscr{B}\right\} \subset \mathscr{P}(X) .
$$

(i) [2 points] Prove that $\sigma(f)$ is a σ-algebra of X.
(ii) [2 points] Let $\mathscr{A} \subset \mathscr{P}(X)$ be a σ-algebra of X. Prove that $f:(X, \mathscr{A}) \rightarrow(Y, \mathscr{B})$ is measurable, that is, $f^{-1}(B) \in \mathscr{A}$ for all $B \in \mathscr{B}$, if and only if $\mathscr{A} \supset \sigma(f)$.

Exercises for week 4

Giorgio Stefani

Exercise 12 (4 points). Let (X, d) be a metric space and let $C \subset X$ be non-empty and closed.
(1) [1 point] Prove that $A_{k}=\left\{x \in X: \operatorname{dist}(x, C)<\frac{1}{k}\right\}$ is open for all $k \in \mathbb{N}$.
(2) [2 points] Prove that $C=\cap_{k \in \mathbb{N}} A_{k}$.
(3) [1 point] Prove that an open set $A \subset X$ is a countable union of closed sets.

Exercise 13 (5 points). Let $n \in \mathbb{N}$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a Lipschitz function with Lipschitz constant $L \in[0,+\infty)$. Let $s \geq 0$ and let $\mathscr{H}^{s}: \mathscr{P}\left(\mathbb{R}^{n}\right) \rightarrow[0,+\infty]$ be the s-dimensional Hausdorff outer measure on \mathbb{R}^{n}.
(i) [2 points] Prove that $\operatorname{diam}(f(E)) \leq L \operatorname{diam}(E)$ for all $E \subset \mathbb{R}^{n}$.
(ii) $\left[2\right.$ points] Prove that $\mathscr{H}^{s}(f(E)) \leq L^{s} \mathscr{H}^{s}(E)$ for all $E \subset \mathbb{R}^{n}$.
(iii) [1 point] Find a constant $L \in(0,+\infty)$ and an L-Lipschitz function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $\mathscr{H}^{s}(f(E))=L^{s} \mathscr{H}^{s}(E)$ for all $E \subset \mathbb{R}^{n}$.

Exercise 14 (7 points). Let (X, d) be a metric space. Let $\mathscr{F} \subset \mathscr{P}(X)$ be a family of subsets of X such that $\varnothing \in \mathscr{F}$. Let $\tau: \mathscr{F} \rightarrow[0,+\infty]$ be a function such that $\tau(\varnothing)=0$. Given $\delta>0$, we define $\mu_{\delta}^{\tau}: \mathscr{P}(X) \rightarrow[0,+\infty]$ as

$$
\mu_{\delta}^{\tau}(A)=\inf \left\{\sum_{k=1}^{+\infty} \tau\left(E_{k}\right):\left(E_{k}\right)_{k \in \mathbb{N}} \subset \mathscr{F}, \operatorname{diam}\left(E_{k}\right) \leq \delta \forall k \in \mathbb{N}, A \subset \bigcup_{k=1}^{+\infty} E_{k}\right\}
$$

for all $A \subset X$.
(i) [2 points] Prove that the limit $\mu^{\tau}(A)=\lim _{\delta \rightarrow 0^{+}} \mu_{\delta}^{\tau}(A) \in[0,+\infty]$ is well defined for all $A \subset X$.
(ii) [2 points] Prove that the function $\mu^{\tau}: \mathscr{P}(X) \rightarrow[0,+\infty]$ is an outer measure on X.
(iii) [2 points] Prove that the function $\mu^{\tau}: \mathscr{P}(X) \rightarrow[0,+\infty]$ is a metric outer measure on X, that is, if $\operatorname{dist}(A, B)>0$, then $\mu^{\tau}(A \cup B)=\mu^{\tau}(A)+\mu^{\tau}(B)$ for all $A, B \subset X$.
(iv) [1 point] Prove that $\mu^{\tau}: \mathscr{P}(X) \rightarrow[0,+\infty]$ is a Borel outer measure on X.

Exercise 15 (7 points). Let $\mathscr{L}^{n}: \mathscr{P}\left(\mathbb{R}^{n}\right) \rightarrow[0,+\infty]$ be the Lebesgue outer measure on \mathbb{R}^{n}.
(i) $[1$ point $]$ Prove that $\mathscr{L}^{1}(\partial I)=0$ for all open intervals $I \subset \mathbb{R}$.
(ii) [2 points] Prove that $\mathscr{L}^{n}(\partial I)=0$ for all open boxes $I \subset \mathbb{R}^{n}$.
(iii) [3 points] Let $H=\left\{x \in \mathbb{R}^{n}: x_{n}=0\right\}$. Prove that $\mathscr{L}^{n}(H)=0$.
(iv) [1 point] Prove that $\mathscr{L}^{n}(A)>0$ for all non-empty open sets $A \subset \mathbb{R}^{n}$.

Bonus (2 points). Let X be a non-empty set and let $\mu: \mathscr{P}(X) \rightarrow[0,+\infty]$ be an outer measure. Prove that $\mu(A \cup B)+\mu(A \cap B)=\mu(A)+\mu(B)$ for all $A, B \in \operatorname{Meas}(X ; \mu)$.

Exercises for week 5

Giorgio Stefani

Exercise 16 (4 points). Let (X, d) be a metric space.
(i) [2 points] Let $\left(K_{n}\right)_{n \in \mathbb{N}}$ be a sequence of non-empty compact subsets of X such that $K_{n+1} \subset K_{n}$ for all $n \in \mathbb{N}$. Prove that $\bigcap_{n \in \mathbb{N}} K_{n} \neq \varnothing$.
(ii) $[2$ points $]$ Prove that $\operatorname{diam}(\AA) \leq \operatorname{diam}(A)=\operatorname{diam}(\bar{A})$ for all $A \subset X$. As usual, $\operatorname{diam}(\varnothing)=0$.

Exercise 17 (6 points). Let $\phi:[0,+\infty) \rightarrow[0,+\infty)$ be a continuous function such that
(a) $\phi(0)=0$;
(b) $s \leq t \Rightarrow \phi(s) \leq \phi(t)$ for all $s, t \in[0,+\infty)$;
(c) $\phi(s+t) \leq \phi(s)+\phi(t)$ for all $s, t \in[0,+\infty)$.

We define

$$
\phi(+\infty)=\lim _{t \rightarrow+\infty} \phi(t) \in[0,+\infty] .
$$

Let X be a non-empty set and let $\mu: \mathscr{P}(X) \rightarrow[0,+\infty]$ be an outer measure.
(i) [2 points] Find two continuous functions $\phi_{1}, \phi_{2}:[0,+\infty) \rightarrow[0,+\infty)$, satisfying points (a), (b) and (c) above, such that $\phi_{1}(+\infty)=+\infty$ and $\phi_{2}(+\infty) \in(0,+\infty)$.
(ii) [2 points] Prove that the function $\mu_{\phi}: \mathscr{P}(X) \rightarrow[0,+\infty]$ defined by setting $\mu_{\phi}(A)=\phi(\mu(A))$ for all $A \subset X$ is an outer measure on X.
(iii) $[2$ points $]$ Assume that $\phi:[0,+\infty) \rightarrow[0,+\infty)$ is injective. Prove that $\operatorname{Meas}\left(X ; \mu_{\phi}\right) \subset \operatorname{Meas}(X ; \mu)$.

Exercise 18 (6 points). Let $s \geq 0$ and let $\mathscr{H}^{s}: \mathscr{P}\left(\mathbb{R}^{n}\right) \rightarrow[0,+\infty]$ be the s-dimensional Hausdorff outer measure on \mathbb{R}^{n}.
(i) [2 points] Prove that, if $s>n$, then $\mathscr{H}^{s}(A)=0$ for all $A \subset \mathbb{R}^{n}$.
(ii) [2 points] Prove that, if $\mathscr{H}^{s}(A)<+\infty$ for some $A \subset \mathbb{R}^{n}$, then $\mathscr{H}^{t}(A)=0$ for all $t \in(s,+\infty)$.
(iii) [2 points] Prove that, if $\mathscr{H}^{s}(A)>0$ for some $A \subset \mathbb{R}^{n}$, then $\mathscr{H}^{t}(A)=+\infty$ for all $t \in[0, s)$.

Bonus (4 points). Set $\aleph_{0}=\operatorname{Card}(\mathbb{N})$ as usual. Let X be a set with $\operatorname{Card}(X)>\aleph_{0}$.
(i) [2 points] Define

$$
\mathscr{A}=\left\{A \subset X: \text { either } \operatorname{Card}(A) \leq \aleph_{0} \text { or } \operatorname{Card}\left(A^{c}\right) \leq \aleph_{0}\right\} .
$$

Prove that \mathscr{A} is a σ-algebra.
(ii) [2 points] Define $\mu: \mathscr{A} \rightarrow[0,+\infty]$ by setting

$$
\mu(A)= \begin{cases}0 & \text { if } \operatorname{Card}(A) \leq \aleph_{0} \\ 1 & \text { if } \operatorname{Card}\left(A^{c}\right) \leq \aleph_{0}\end{cases}
$$

for all $A \in \mathscr{A}$. Prove that (X, \mathscr{A}, μ) is a measurable space.

Exercises for week 6

Giorgio Stefani

Exercise 19 (4 points). Let X and Y be two sets and let $f: X \rightarrow Y$ be a function. Let I be an arbitrary set of indexes and assume $A_{i} \subset X$ and $B_{i} \subset Y$ for all $i \in I$. Prove the following statements.
(i) $[1$ point $] f^{-1}\left(\bigcup_{i \in I} B_{i}\right)=\bigcup_{i \in I} f^{-1}\left(B_{i}\right)$.
(ii) $[1$ point $] f^{-1}\left(\bigcap_{i \in I} B_{i}\right)=\bigcap_{i \in I} f^{-1}\left(B_{i}\right)$.
(iii) [1 point] $f\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I} f\left(A_{i}\right)$.
(iv) [1 point] $f\left(\bigcap_{i \in I} A_{i}\right) \subset \bigcap_{i \in I} f\left(A_{i}\right)$, with possible strict inclusion (example required).

Exercise 20 (10 points). Let $s \geq 0$ and let $\mathscr{H}^{s}: \mathscr{P}\left(\mathbb{R}^{n}\right) \rightarrow[0,+\infty]$ be the s-dimensional Hausdorff outer measure on \mathbb{R}^{n}.
(i) [2 points] Prove that \mathscr{H}^{0} coincides with the counting outer measure. Precisely, $\mathscr{H}^{0}(A)=\mathrm{c}(A)$ for all $A \subset \mathbb{R}^{n}$, where c: $\mathscr{P}\left(\mathbb{R}^{n}\right) \rightarrow[0,+\infty]$ is defined as

$$
c(A)= \begin{cases}\operatorname{Card}(A) & \text { if } \operatorname{Card}(A)<+\infty, \\ +\infty & \text { otherwise }\end{cases}
$$

for all $A \subset \mathbb{R}^{n}$. Hint: start by proving that $\mathscr{H}^{0}(\{x\})=1$ for all $x \in \mathbb{R}^{n}$.
(ii) [2 points] Prove that, if $\mathscr{H}_{\delta}^{s}(A)=0$ for some $A \subset \mathbb{R}^{n}$ and $\delta \in(0,+\infty)$, then $\mathscr{H}^{s}(A)=0$.
(iii) [2 points] Let $\varnothing \neq A \subset \mathbb{R}$ be such that $\operatorname{diam}(A)<+\infty$. Prove that $-\infty<\inf A \leq \sup A<+\infty$ and that $\operatorname{diam}(A)=\sup A-\inf A$.
(iv) [2 points] Prove that

$$
\mathscr{L}^{1}(A)=\inf \left\{\sum_{k=1}^{+\infty} \operatorname{diam}\left(E_{k}\right): A \subset \bigcup_{k=1}^{+\infty} E_{k}\right\}
$$

for all $A \subset \mathbb{R}$, where $\mathscr{L}^{1}: \mathscr{P}(\mathbb{R}) \rightarrow[0,+\infty]$ is the Lebesgue outer measure on \mathbb{R}. Deduce that $\mathscr{L}^{1}(A) \leq \mathscr{H}^{1}(A)$ for all $A \subset \mathbb{R}$ (you may need to know that $\Gamma\left(\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2}$).
(v) [2 points] Let $\delta>0$. Exploiting (\star) and the family $\left(I_{k}^{\delta}\right)_{k \in \mathbb{Z}}$, where $I_{k}^{\delta}=[k \delta,(k+1) \delta]$ for all $k \in \mathbb{Z}$, prove that $\mathscr{L}^{1}(A)=\mathscr{H}^{1}(A)$ for all $A \subset \mathbb{R}$.

Exercise 21 (4 points). Let $\operatorname{dim}_{\mathscr{H}}(A) \in[0, n]$ be the Hausdorff dimension of the set $A \subset \mathbb{R}^{n}$.
(i) [2 points] Prove that, if $A \subset \mathbb{R}^{n}$ is countable, then $\operatorname{dim}_{\mathscr{H}}(A)=0$.
(ii) [2 points] Prove that, if $A, B \subset \mathbb{R}^{n}$, then $\operatorname{dim}_{\mathscr{H}}(A \cup B)=\max \left\{\operatorname{dim}_{\mathscr{H}}(A), \operatorname{dim}_{\mathscr{H}}(B)\right\}$.

Exercise 22 (4 points). Let $\mathscr{L}^{n}: \mathscr{P}\left(\mathbb{R}^{n}\right) \rightarrow[0,+\infty]$ be the Lebsegue outer measure on \mathbb{R}^{n}.
(i) [2 points] Let $E \subset \mathbb{R}^{n}$. Prove that $E \in \operatorname{Meas}\left(\mathbb{R}^{n} ; \mathscr{L}^{n}\right)$ if and only if $\mathbf{1}_{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is \mathscr{L}^{n}. measurable, where

$$
\mathbf{1}_{E}(x)= \begin{cases}1 & x \in E \\ 0 & x \notin E\end{cases}
$$

for all $x \in \mathbb{R}^{n}$.
(ii) [2 points] Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}\pi \min \left\{x^{2}, 3\right\} & x \in \mathbb{Q} \\ -\sqrt{2} x & x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

is \mathscr{L}^{1}-measurable.

Exercises for week 7

Giorgio Stefani

Exercise 23 (4 points). Let (X, d) be a metric space. Let $A, B \subset X$ and let $f: X \rightarrow \mathbb{R}$ be a function.
(i) [3 points] Assume that $\operatorname{dist}(A, B)>0$. Prove that, if the functions $f: A \rightarrow \mathbb{R}$ and $f: B \rightarrow \mathbb{R}$ are continuous, then also $f: A \cup B \rightarrow \mathbb{R}$ is continuous.
(ii) [1 point] Is the implication in (i) still true if we only assume that $A \cap B=\varnothing$? If yes, then prove it. If no, then give an explicit counterexample.

Exercise 24 (3 points). Let X be a non-empty set and let $\mu: \mathscr{P}(X) \rightarrow[0,+\infty]$ be an outer measure on X. Assume that $f_{k}: X \rightarrow \mathbb{R}$ is μ-measurable for all $k \in \mathbb{N}$. Prove that the sets

$$
\left\{x \in X: \exists \lim _{k \rightarrow+\infty} f_{k}(x) \in \mathbb{R}\right\}, \quad\left\{x \in X: \lim _{k \rightarrow+\infty} f_{k}(x)=+\infty\right\}, \quad\left\{x \in X: \lim _{k \rightarrow+\infty} f_{k}(x)=-\infty\right\}
$$

are μ-measurable.
Exercise 25 (4 points). Let $\mu: \mathscr{P}\left(\mathbb{R}^{n}\right) \rightarrow[0,+\infty]$ be Radon outer measure on \mathbb{R}^{n}. Let $f_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a μ-measurable function for all $k \in \mathbb{N}$. Assume that
(a) $E \in \operatorname{Meas}\left(\mathbb{R}^{n} ; \mu\right)$ with $\mu(E)<+\infty$;
(b) for each $x \in E$ there is a constant $M_{x} \in \mathbb{R}$ such that $\left|f_{k}(x)\right| \leq M_{x}$ for all $k \in \mathbb{N}$.

Prove that, for each $\varepsilon>0$, there exist a set $F_{\varepsilon} \subset E$ and a constant $M_{\varepsilon} \in \mathbb{R}$ such that
(i) F_{ε} is closed and $\mu\left(E \backslash F_{\varepsilon}\right)<\varepsilon$;
(ii) $\left|f_{k}(x)\right| \leq M_{\varepsilon}$ for all $x \in F_{\varepsilon}$ and all $k \in \mathbb{N}$.

Exercise 26 (4 points). Let $\mu: \mathscr{P}\left(\mathbb{R}^{n}\right) \rightarrow[0,+\infty]$ be a Borel outer measure on \mathbb{R}^{n}. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function. Assume that, if $\varepsilon>0$, then there exists a closed set $C \subset \mathbb{R}^{n}$ such that $\mu\left(\mathbb{R}^{n} \backslash C\right)<\varepsilon$ and $f: C \rightarrow \mathbb{R}$ is continuous. Prove that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is μ-measurable.

Bonus (4 points). Let $\mathscr{L}^{n}: \mathscr{P}\left(\mathbb{R}^{n}\right) \rightarrow[0,+\infty]$ be the Lebesgue outer measure. Find an \mathscr{L}^{2} measurable set $E \subset \mathbb{R}^{2}$ and a smooth and Lipschitz function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $f(E) \subset \mathbb{R}$ is not \mathscr{L}^{1}-measurable.

Exercises for week 8

Giorgio Stefani

Exercise 27 (6 points +2 bonus points). Let $f:[0,1] \rightarrow \mathbb{R}$ be a bounded function. We let

$$
\omega(f, I)=\sup \{f(x)-f(y): x, y \in I\}
$$

be the oscillation of the function f on the interval $I \subset[0,1]$. We also let

$$
\omega(f, x)=\lim _{r \rightarrow 0^{+}} \omega\left(f, I_{r}(x)\right)
$$

be the local oscillation of the function f at $x \in[0,1]$, where $I_{r}(x)=\{y \in[0,1]:|y-x|<r\}$.
(i) [1 point] Prove that $\omega(f, x)=\inf _{r>0} \omega\left(f, I_{r}(x)\right)$ for all $x \in[0,1]$.
(ii) [1 point] Prove that $x \mapsto \omega(f, x)$ is upper semicontinuous on [0,1], that is,

$$
\limsup _{y \rightarrow x} \omega(f, y) \leq \omega(f, x) \quad \text { for all } x \in[0,1] .
$$

(iii) [2 points] Prove that f is continuous at $x \in[0,1]$ if and only if $\omega(f, x)=0$.
(iv) [2 points] Assume that $\omega(f, x)<\varepsilon$ for all $x \in[0,1]$ for some $\varepsilon>0$. Prove that there exists $\delta>0$ such that $\omega(f, I)<\varepsilon$ for all intervals $I \subset[0,1]$ such that $\mathscr{L}^{1}(I)<\delta$.
(v) [2 bonus points] Let $D(f)=\{x \in[0,1]: \omega(f, x)>0\}$. Prove that, if $\mathscr{L}^{1}(D(f))=0$, then f is \mathscr{L}^{1}-measurable on $[0,1]$.

Exercise 28 (4 points). Let $f: X \rightarrow[0,+\infty]$ be a μ-measurable function.
(i) $\left[2\right.$ points] Prove that $\mu(\{x \in X: f(x)>t\}) \leq \frac{1}{t} \int_{X} f d \mu$ for all $t>0$.
(ii) [2 points] Prove that, if $\int_{X} f d \mu<+\infty$, then $f(x)<+\infty$ for μ-a.e. $x \in X$.

Exercise 29 (4 points). Let $f \in \mathbb{R} \rightarrow \mathbb{R}$ be a \mathscr{L}^{1}-measurable such that $\int_{\mathbb{R}}|f| d \mathscr{L}^{1}<+\infty$. Let $c \in \mathbb{R}$. Prove that the function $F_{c}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $F_{c}(t)=\int_{[c, t]^{*}} f d \mathscr{L}^{1}$ for all $t \in \mathbb{R}$, where $[c, t]^{*}=\{x \in \mathbb{R}: c \wedge t \leq x \leq c \vee t\}$, is well defined and continuous on \mathbb{R}.

Exercise 30 (4 points). Let $f_{k}: X \rightarrow[0,+\infty]$ be a non-negative μ-measurable function for all $k \in \mathbb{N}$. Assume that there exists a function $f: X \rightarrow[0,+\infty]$ such that
(a) $\lim _{k \rightarrow+\infty} f_{k}(x)=f(x)$ for μ-a.e. $x \in X$;
(b) $f_{k}(x) \leq f(x)$ for μ-a.e. $x \in X$ and all $k \in \mathbb{N}$.

Prove that $\lim _{k \rightarrow+\infty} \int_{X} f_{k} d \mu=\int_{X} f d \mu$.

Bonus (4 points). Let $f: X \rightarrow[0,+\infty]$ be a non-negative μ-measurable function. Prove that the function $\nu: \operatorname{Meas}(X ; \mu) \rightarrow[0,+\infty]$, defined as

$$
\nu(A)=\int_{A} f d \mu
$$

for all $A \in \operatorname{Meas}(X ; \mu)$, is a measure.

Exercises for week 9

Giorgio Stefani
Exercise 31 (6 points).
(i) [2 points] Let $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be two continuous functions. Prove that, if $f=g \mathscr{L}^{n}$-a.e. on \mathbb{R}^{n}, then $f=g$ everywhere on \mathbb{R}^{n}.
(ii) [2 points] Let $f, g \in \mathcal{L}^{1}(X, \mu)$. Prove that $f=g \mu$-a.e. on X if and only if $\int_{E} f d \mu=\int_{E} g d \mu$ for all $E \in \operatorname{Meas}(X ; \mu)$.
(iii) $\left[2\right.$ points] Set $\aleph_{0}=\operatorname{Card}(\mathbb{N})$ as usual. Let X be a set with $\operatorname{Card}(X)>\aleph_{0}$. Consider

$$
\mathscr{A}=\left\{A \subset X: \text { either } \operatorname{Card}(A) \leq \aleph_{0} \text { or } \operatorname{Card}\left(A^{c}\right) \leq \aleph_{0}\right\}
$$

and define $\mu: \mathscr{A} \rightarrow[0,+\infty]$ by setting

$$
\mu(A)= \begin{cases}0 & \text { if } \operatorname{Card}(A) \leq \aleph_{0} \\ +\infty & \text { if } \operatorname{Card}\left(A^{c}\right) \leq \aleph_{0}\end{cases}
$$

for all $A \in \mathscr{A}$. Prove that (X, \mathscr{A}, μ) is a measurable space [1 point] and find two μ-measurable functions $f, g: X \rightarrow[0,+\infty]$ such that $\int_{A} f d \mu=\int_{A} g d \mu$ for all $A \in \mathscr{A}$ but $f(x) \neq g(x)$ for all $x \in X$ [1 point].

Exercise 32 (4 points). Let $f_{k}: X \rightarrow[-\infty,+\infty]$ be a μ-measurable function for all $k \in \mathbb{N}$ and let $g \in \mathcal{L}^{1}(X, \mu)$. Prove that, if $f_{k} \leq g \mu$-a.e. on X for all $k \in \mathbb{N}$, then

$$
\limsup _{k \rightarrow+\infty} \int_{X} f_{k} d \mu \leq \int_{X} \limsup _{k \rightarrow+\infty} f_{k} d \mu
$$

Exercise 33 (4 points). Let $f_{k} \in \mathcal{L}^{1}(X, \mu)$ be such that $f_{k} \geq 0 \mu$-a.e. on X for all $k \in \mathbb{N}$. Assume that

$$
\lim _{k \rightarrow+\infty} f_{k}=f \mu \text {-a.e. on } X \quad \text { and } \quad \lim _{k \rightarrow+\infty} \int_{X} f_{k} d \mu=\int_{X} f d \mu<+\infty .
$$

Prove that $\lim _{k \rightarrow+\infty} \int_{X}\left|f_{k}-f\right| d \mu=0$.
Exercise 34 (4 points). Let $f: X \rightarrow \mathbb{R}$ be an μ-measurable function such that $f \geq 0 \mu$-a.e. on X. Assume that there exists $\alpha \in[0,+\infty)$ such that $\int_{X} f(x)^{k} d \mu(x)=\alpha$ for all $k \in \mathbb{N}$. Prove that $f=\mathbf{1}_{E}$ μ-a.e. on X for some $E \in \operatorname{Meas}(X ; \mu)$ with $\mu(E)=\alpha$.

Bonus (4 points). Let X be an non-empty set and let $\mathscr{R} \subset \mathscr{P}(X)$ be a semiring on X. Let $\mu: \mathscr{R} \rightarrow$ $[0,+\infty]$ be a measure on \mathscr{R}.
(1) [2 points] Let $A, B_{1}, \ldots, B_{m} \in \mathscr{R}$. Prove that there exist disjoint sets $C_{1}, \ldots, C_{n} \in \mathscr{R}$ such that $A \backslash \bigcup_{i=1}^{m} B_{i}=\bigsqcup_{j=1}^{n} C_{j}$.
(2) [2 points] Let $A_{1}, \ldots, A_{n} \in \mathscr{R}$ be disjoint and assume that $\bigsqcup_{k=1}^{n} A_{k} \subset A$ for some $A \in \mathscr{R}$. Prove that $\sum_{k=1}^{n} \mu\left(A_{k}\right) \leq \mu(A)$.

Exercises for week 10

Giorgio Stefani

Exercise 35 (6 points). Let $f: X \rightarrow[0,+\infty]$ be a non-negative μ-measurable function and let $\left(A_{k}\right)_{k \in \mathbb{N}}$ be a sequence of μ-measurable sets.
(i) [1 point] Define $\gamma(x)=\sum_{k=1}^{+\infty} \mathbf{1}_{A_{k}}(x)$ for all $x \in X$. Prove that $\gamma: X \rightarrow[0,+\infty]$ is μ-measurable.
(ii) [2 points] Let $A=\bigcup_{k=1}^{+\infty} A_{k}$. Prove that $\int_{A} f d \mu \leq \int_{A} f \gamma d \mu=\sum_{k=1}^{+\infty} \int_{A_{k}} f d \mu$.
(iii) [2 points] Assume $M=\sup _{x \in X} \gamma(x)<+\infty$. Prove that $\sum_{k=1}^{+\infty} \int_{A_{k}} f d \mu \leq M \int_{A} f d \mu$.
(iv) [1 point] Prove that $\sum_{k=1}^{+\infty} \mu\left(A_{k}\right) \leq M \mu\left(\bigcup_{k=1}^{+\infty} A_{k}\right)$.

Exercise 36 (5 points). Let $\left(f_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{L}^{1}(X, \mu)$ be a sequence of μ-integrable functions such that $\sum_{k=1}^{+\infty} \int_{X}\left|f_{k}\right| d \mu<+\infty$.
(i) [2 points] Prove that $f(x)=\sum_{k=1}^{+\infty} f_{k}(x)=\lim _{m \rightarrow+\infty} \sum_{k=1}^{m} f_{k}(x)$ exists and is finite for μ-a.e. $x \in X$.
(ii) [2 points] Prove that $f \in \mathcal{L}^{1}(X, \mu)$ and that $\lim _{m \rightarrow+\infty} \int_{X}\left|f-\sum_{k=1}^{m} f_{k}\right| d \mu=0$.
(iii) [1 point] Prove that $\int_{X} f d \mu=\sum_{k=1}^{+\infty} \int_{X} f_{k} d \mu$.

Exercise 37 (4 points). Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function $f(x, y)=y e^{-\left(1+x^{2}\right) y^{2}}$ for $x, y \in \mathbb{R}$. Apply the Fubini-Tonelli's Theorem to the integral

$$
I=\int_{\mathbb{R} \times[0,+\infty)} f(x, y) d\left(\mathscr{L}^{1} \otimes \mathscr{L}^{1}\right)(x, y)
$$

to show that $\int_{\mathbb{R}} e^{-x^{2}} d x=\sqrt{\pi}$.

Exercise 38 (4 points). Let $f: X \rightarrow[0,+\infty]$ be a non-negative μ-measurable function. Define the set $G_{f}=\{(x, t) \in X \times \mathbb{R}: 0 \leq t<f(x)\} \subset X \times \mathbb{R}$.
(i) $[2$ points $]$ Prove that $G_{f} \in \operatorname{Meas}\left(X \times \mathbb{R} ; \mu \otimes \mathscr{L}^{1}\right)$.
(ii) [2 points] Prove that $\left(\mu \otimes \mathscr{L}^{1}\right)\left(G_{f}\right)=\int_{X} f d \mu \in[0,+\infty]$.

Bonus (4 points). Let $f \in \mathcal{L}^{1}(X, \mu)$ be a μ-integrable function. Prove that there exists a sequence $\left(\varphi_{k}\right)_{k \in \mathbb{N}}$ of simple functions $\varphi_{k}: X \rightarrow \mathbb{R}, k \in \mathbb{N}$, such that $\lim _{k \rightarrow+\infty} \int_{X}\left|f-\varphi_{k}\right| d \mu=0$.

Exercises for week 11

Giorgio Stefani

Exercise 39 (4 points). Let (X, \mathscr{A}, μ) be a measurable space.
(i) [2 points] Let $p, q, r \in[1,+\infty]$ be such that $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$. Prove that, if $f \in \mathcal{L}^{p}(X, \mu)$ and $f \in \mathcal{L}^{q}(X, \mu)$, then $f g \in \mathcal{L}^{r}(X, \mu)$ with $\|f g\|_{\mathcal{L}^{r}} \leq\|f\|_{\mathcal{L}^{p}}\|g\|_{\mathcal{L}^{q}}$.
(ii) [2 points] Let $m \in \mathbb{N}$ and let $p_{1}, \ldots, p_{m}, r \in[1,+\infty]$ be such that $\frac{1}{p_{1}}+\cdots+\frac{1}{p_{m}}=\frac{1}{r}$. Prove that, if $f_{k} \in \mathcal{L}^{p_{k}}(X, \mu)$ for all $k=1, \ldots, m$, then $\prod_{k=1}^{m} f_{k} \in \mathcal{L}^{r}(X, \mu)$ with $\left\|\prod_{k=1}^{m} f_{k}\right\|_{\mathcal{L}^{r}} \leq \prod_{k=1}^{m}\left\|f_{k}\right\|_{\mathcal{L}^{p_{k}}}$.

Exercise 40 (4 points). Let $\mu: \mathscr{P}(\mathbb{R}) \rightarrow[0,+\infty]$ be a Borel outer measure such that $\mu(\mathbb{R})=1$. Prove that

$$
\mathscr{L}^{1}(E)=\int_{\mathbb{R}} \mu(x+E) d x
$$

for all Borel sets $E \subset \mathbb{R}$.

Exercise 41 (4 points). Let (X, \mathscr{A}, μ) be a measurable space with $\mu(X)<+\infty$. Let $f: X \rightarrow[0,+\infty]$ be a μ-measurable function, not μ-a.e. equal to the null function, such that $f \in \mathcal{L}^{p}(X, \mu)$ for all $p \in[1,+\infty)$. Prove that

$$
\lim _{p \rightarrow+\infty} \frac{\|f\|_{\mathcal{L}^{p+1}}^{p+1}}{\|f\|_{\mathcal{L}^{p}}^{p}}=\|f\|_{\mathcal{L}^{\infty}} .
$$

Exercise 42 (4 points). Let $\varphi:[0,1] \rightarrow \mathbb{R}$ be continuous function such that $\varphi(x)>0$ for all $x \in[0,1]$. Prove that

$$
\lim _{p \rightarrow+\infty}\left(\int_{[0,1]}|f|^{p} \varphi d \mathscr{L}^{1}\right)^{\frac{1}{p}}=\|f\|_{\mathcal{L}^{\infty}}
$$

for all $f \in \mathcal{L}^{1}\left([0,1], \mathscr{L}^{1}\right)$.
Bonus (2 points). Find $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f \in \bigcap_{p \in[1,+\infty)} \mathcal{L}^{p}\left(\mathbb{R}^{n}, \mathscr{L}^{n}\right) \backslash \mathcal{L}^{\infty}\left(\mathbb{R}^{n}, \mathscr{L}^{n}\right)$.

Exercises for week 12

Giorgio Stefani

Exercise 43 (4 points). Let (X, \mathscr{A}, μ) be a measurable space. Let $\left(A_{k}\right)_{k \in \mathbb{N}} \subset \mathscr{A}$ be a sequence of pairwise disjoint sets such that $\mu\left(A_{k}\right) \in(0,+\infty)$ for all $k \in \mathbb{N}$. Let $1 \leq p<q<+\infty$.
(i) [2 points] Assume that there exists a subsequence $\left(A_{k_{j}}\right)_{j \in \mathbb{N}}$ such that $\lim _{j \rightarrow+\infty} \mu\left(A_{k_{j}}\right)=0$. Prove that $L^{p}(X, \mu) \backslash L^{q}(X, \mu) \neq \varnothing$.
(ii) $[2$ points $]$ Assume that there exists a subsequence $\left(A_{k_{j}}\right)_{j \in \mathbb{N}}$ such that $\inf _{j \in \mathbb{N}} \mu\left(A_{k_{j}}\right)>0$. Prove that $L^{q}(X, \mu) \backslash L^{p}(X, \mu) \neq \varnothing$.

Exercise 44 (4 points). Let (X, \mathscr{A}, μ) be a measurable space. Prove that the following statements are equivalent.
(i) There exists a sequence $\left(A_{k}\right)_{k \in \mathbb{N}} \subset \mathscr{A}$ such that $\mu\left(A_{k}\right)>0$ for all $k \in \mathbb{N}$ and $\lim _{k \rightarrow+\infty} \mu\left(A_{k}\right)=0$.
(ii) There exists a sequence $\left(B_{k}\right)_{k \in \mathbb{N}} \subset \mathscr{A}$ such that $0<\mu\left(B_{k}\right) \leq \frac{1}{2^{k}}$ for all $k \in \mathbb{N}$.
(iii) $L^{1}(X, \mu) \backslash L^{\infty}(X, \mu) \neq \varnothing$.
(iv) There exists a sequence $\left(C_{k}\right)_{k \in \mathbb{N}} \subset \mathscr{A}$ of pairwise disjoint sets such that $0<\mu\left(C_{k}\right) \leq \frac{1}{2^{k}}$ for all $k \in \mathbb{N}$.

Exercise 45 (4 points). Let $p \in[1,+\infty]$. Prove that $\left(L^{p}\left(\mathbb{R}^{n}, \mathscr{L}^{n}\right),\|\cdot\|_{p}\right)$ is a Hilbert space if [2 points] and only if [2 points] $p=2$.

Exercise 46 (4 points). Let (X, \mathscr{A}, μ) be a measurable space and let $p \in[1,+\infty)$. Assume that $\left(f_{k}\right)_{k \in \mathbb{N}} \subset L^{p}(X, \mu)$ and $f \in L^{p}(X, \mu)$ are such that
(i) $\lim _{k \rightarrow+\infty} f_{k}(x)=f(x)$ for μ-a.e. $x \in X$;
(ii) $\lim _{k \rightarrow+\infty}\left\|f_{k}\right\|_{p}=\|f\|_{p}$.

Prove that $\lim _{k \rightarrow+\infty}\left\|f_{k}-f\right\|_{p}=0$.

Bonus (2 points). Let (X, \mathscr{A}, μ) be a measurable space. Let $1 \leq p<q<r \leq+\infty$. Prove that $L^{q}(X, \mu) \subset L^{p}(X, \mu)+L^{r}(X, \mu)$, that is, if $f \in L^{q}(X, \mu)$, then $f=f_{1}+f_{2}$ for some $f_{1} \in L^{p}(X, \mu)$ and $f_{2} \in L^{r}(X, \mu)$.

Exercises for week 13

Giorgio Stefani

Exercise 47. Let (X, \mathscr{A}, μ) be a measurable space and let $p \in[1,+\infty)$. Let $\left(f_{k}\right)_{k \in \mathbb{N}} \subset L^{p}(X, \mu)$ be such that $f_{k} \rightarrow f$ in $L^{p}(X, \mu)$ as $k \rightarrow+\infty$ for some $f \in L^{p}(X, \mu)$. Prove that $f_{k} \rightarrow f$ in measure as $k \rightarrow+\infty$.

Exercise 48. Let (X, \mathscr{A}, μ) be a measurable space such that $\mu(X)=1$. Let $\varphi:[0,+\infty) \rightarrow[0,+\infty)$ be a continuous, convex and monotone increasing function and define $\varphi(+\infty)=+\infty$. Prove that

$$
\varphi\left(\int_{X} f d \mu\right) \leq \int_{X} \varphi(f) d \mu
$$

for all non-negative measurable functions $f: X \rightarrow[0,+\infty]$.

Exercise 49. Let (X, \mathscr{A}, μ) be a measurable space such that $\mu(X)<+\infty$. Let $p \in(1,+\infty)$ and let $\left(f_{k}\right)_{k \in \mathbb{N}} \subset L^{p}(X, \mu)$ be such that $M=\sup _{k \in \mathbb{N}}\left\|f_{k}\right\|_{p}<+\infty$. Assume that $f_{k} \rightarrow f \mu$-a.e. in X as $k \rightarrow+\infty$ for some measurable function $f: X \rightarrow[-\infty,+\infty]$.
(i) Prove that $f \in L^{p}(X, \mu)$ with $\|f\|_{p} \leq M$.
(ii) Prove that, for all $\varepsilon>0$, there exists $\delta>0$ such that

$$
E \in \mathscr{A} \text { with } \mu(E)<\delta \Longrightarrow \sup _{k \in \mathbb{N}} \int_{E}\left|f_{k}-f\right|^{q} d \mu<\varepsilon
$$

(iii) Prove that $f_{k} \rightarrow f$ in $L^{q}(X, \mu)$ as $k \rightarrow+\infty$ for all $q \in[1, p)$.
(iv) Prove that one cannot take $q=p$ in the previous point with a counterexample.

Exercise 50. Let (X, \mathscr{A}, μ) be a measurable space such that $\mu(X)<+\infty$. Let $p \in(1,+\infty)$ and let $\left(f_{k}\right)_{k \in \mathbb{N}} \subset L^{p}(X, \mu)$ be such that $M=\sup _{k \in \mathbb{N}}\left\|f_{k}\right\|_{p}<+\infty$. Assume that $f_{k} \rightarrow f$ in measure as $k \rightarrow+\infty$ for some measurable function $f: X \rightarrow[-\infty,+\infty]$.
(i) Prove that $f \in L^{p}(X, \mu)$ with $\|f\|_{p} \leq M$.
(ii) Prove that $\lim _{k \rightarrow+\infty} \int_{\left\{\left|f_{k}-f\right| \geq \varepsilon\right\}} g d \mu=0$ for all $\varepsilon>0$ and all $g \in L^{1}(X, \mu)$.
(iii) Prove that $f_{k} \rightarrow f$ weakly in $L^{p}(X, \mu)$ as $k \rightarrow+\infty$.
(iv) Prove that one cannot take $p=1$ in the previous point with a counterexample.

Extra exercises

Giorgio Stefani

Exercise 51. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Lebesgue measurable function. Assume that

$$
\sup _{k \in \mathbb{N}} \int_{\mathbb{R}}|x|^{k}|f(x)| d x<+\infty .
$$

Is it true that $f(x)=0$ for \mathscr{L}^{1}-a.e. $x \in \mathbb{R} \backslash[-1,1]$? If yes, then prove it. If no, then give a counterexample.

Exercise 52. Let (X, \mathscr{A}, μ) be a measurable space. Let $f, f_{k} \in L^{1}(X, \mu), k \in \mathbb{N}$, be such that $f_{k} \rightarrow f$ strongly in $L^{1}(X, \mu)$ as $k \rightarrow+\infty$. Let $\left(A_{k}\right)_{k \in \mathbb{N}} \subset \mathscr{A}$ be such that $\mu\left(A_{k}\right) \rightarrow 0$ as $k \rightarrow+\infty$. Prove that $\lim _{k \rightarrow+\infty} \int_{A_{k}} f_{k} d \mu=0$.

Exercise 53. Let (X, \mathscr{A}, μ) be a measurable space with $\mu(X)<+\infty$. Let $f, f_{k}: X \rightarrow[-\infty,+\infty]$, $k \in \mathbb{N}$, be μ-measurable functions. Prove that the following two statements are equivalent.
(A) $f_{k} \rightarrow f$ in measure as $k \rightarrow+\infty$.
(B) $\lim _{k \rightarrow+\infty} \int_{X} 1 \wedge\left|f_{k}-f\right| d \mu=0$.

Exercise 54. Let $\left(f_{k}\right)_{k \in \mathbb{N}} \subset L^{2}([0,1])$ be such that $\left\|f_{k}\right\|_{L^{2}([0,1])} \leq \sqrt{2}$ for all $k \in \mathbb{N}$. Assume that $f_{k} \rightarrow 0$ in measure as $k \rightarrow+\infty$.
(i) Fix $\eta>0$ and define $g_{\eta, k}=\mathbf{1}_{\left\{\left|f_{k}\right|>\eta\right\}}$ for all $k \in \mathbb{N}$. Prove that

$$
\lim _{k \rightarrow+\infty} \int_{[0,1]} g_{\eta, k} \varphi d x=0
$$

for all $\varphi \in L^{1}([0,1])$.
(ii) Prove that $f_{k} \rightarrow 0$ weakly in $L^{2}([0,1])$ as $k \rightarrow+\infty$.

Exercise 55. Let (X, \mathscr{A}, μ) be a σ-finite measurable space. Let $f: X \rightarrow[0,+\infty]$ be a non-negative μ-measurable function. Prove that, if $\mu(\{x \in X: f(x)>t\}) \geq \frac{1}{1+t}$ for all $t \geq 0$, then $f \notin L^{1}(X, \mu)$.

Exercise 56. Let $\left(f_{k}\right)_{k \in \mathbb{N}} \subset L^{3}([0,1])$ be such that $\left\|f_{k}\right\|_{L^{3}([0,1])} \leq 2$ for all $k \in \mathbb{N}$. Assume that $f_{k} \rightarrow 0$ \mathscr{L}^{1}-a.e. on $[0,1]$ as $k \rightarrow+\infty$.
(i) Prove that $f_{k} \in L^{2}([0,1])$ for all $k \in \mathbb{N}$.
(ii) Let $g_{k}=f_{k}^{2}$ for all $k \in \mathbb{N}$. Prove that $\left(g_{k}\right)_{k \in \mathbb{N}} \subset L^{1}([0,1])$ is uniformly integrable.
(iii) Prove that $f_{k} \rightarrow 0$ strongly in $L^{2}([0,1])$ as $k \rightarrow+\infty$.

Exercise 57. Let $E, E_{k} \subset[0,1], k \in \mathbb{N}$, be Lebesgue measurable sets. Prove that the following two statements are equivalent for any fixed $p \in[1,+\infty)$.
(A) $\mathbf{1}_{E_{k}} \rightarrow \mathbf{1}_{E}$ strongly in $L^{p}([0,1])$ as $k \rightarrow+\infty$.
(B) $\mathbf{1}_{E_{k}} \rightarrow \mathbf{1}_{E}$ weakly in $L^{p}([0,1])$ as $k \rightarrow+\infty$.

