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Euler equations, velocity form

The Euler equations for an incompressible inviscid 2-dimensional fluid are given by
󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

∂tv + (v ·∇)v +∇p = 0 in (0,+∞)× Ω,

div v = 0 in [0,+∞)× Ω,

v · νΩ = 0 on [0,+∞)× ∂Ω,

v|t=0 = v0 on Ω.

Objects:

• Ω is a sufficiently smooth (possibly unbounded) open set or the flat torus T2;

• v : [0,+∞)× Ω → R2 is the velocity of the fluid;

• p : [0,+∞)× Ω → R is the (scalar) pressure;

• νΩ : ∂Ω → R2 is the inner unit normal to ∂Ω.

Conditions:
• div v = 0 is the incompressibility condition;

• v · νΩ = 0 at the boundary is the no-flow (or slip) condition.

Note: either Ω = R2 or Ω = T2 ⇒ no boundary condition is imposed.
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Euler equations, vorticity form

The vorticity ω : [0,+∞)× Ω → R of the fluid is

ω = curl v

and satisfies
󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

∂tω + div(vω) = 0 in (0,+∞)× Ω,

v = Kω in [0,+∞)× Ω,

ω|t=0 = ω0 on Ω.

Biot-Savart law: The relation ω = Kv is the Biot-Savart law, i.e.

v(t, x) = Kω(t, x) =

󰁝

Ω

k(x, y)ω(t, y) dy,

where k : Ω× Ω → R2 is a convolution kernel.

Example: If Ω = R2, then k(x, y) = k2(x− y) with

k2(x) =
1

2π

1

|x|2

󰀕
−x2

x1

󰀖
=

1

2π

x⊥

|x|2 for all x ∈ R2, x ∕= 0.
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Literature: a quick review

Theory of strong solutions is classical (since Lichtenstein 1930).

Existence of weak solutions:
• Yudovich (1963) for L1 ∩ L∞ vorticity
• DiPerna-Majda (1987), Delort (1991), Majda (1993), Vecchi-Wu (1993),

Evans-Müller (1994) for L1 vorticity
• Serfati (1995), Vishik (1999), Taniuchi (2004) for non-decaying vorticity

Uniqueness of weak solutions:
• Yudovich (1963) for L1 ∩ L∞ vorticity
• Yudovich (1995) for unbounded vorticity with Lp-norm mildly growing
• Vishik (1999) for ∞-Besov vorticity

Philosophy: while existence follows the usual pattern

smoothing data → existence of smooth solutions → compactness,

uniqueness is hard, due to non-linearity of Euler equations.

Warning: uniqueness is NOT expected for vorticity in Lp with p < +∞!
• Vishik (2018), Albritton-Bruè-Colombo-De Lellis-Giri-Janisch-Kwon (2021)
• Bressan-Murray (2020), Bressan-Shen (2021)
• Bruè-Colombo (2021)
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Properties of the kernel: less is more

Dropping time dependence, the Biot-Savart law is given by

v(x) = Kω(x) =

󰁝

Ω

k(x, y)ω(y) dy

where, for some C1, C2 > 0, the kernel k : Ω× Ω → R2 satisfies

• decay: |k(x, y)| ≤ C1

|x− y| for all x, y ∈ Ω, x ∕= y;

• oscillation: |k(x, z)− k(y, z)| ≤ C2
|x− y|

|x− z| |y − z| for all x, y, z ∈ Ω, z ∕= x, y.

From the relation v = Kω, we also get

• incompressibility: div(Kω) = 0;

• no-flow: (Kω) · νΩ = 0 at the boundary.

IDEA: try to rely on the above 'metric' properties of k only!

A posteriori: we can even relax the incompressibility property to

• controlled compression: 󰀂 div(Kω)󰀂L∞(Ω) ≤ C3󰀂ω󰀂L1(Ω) for some C3 > 0.
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Exploit decay and oscillation

Fix x, y ∈ Ω with d = |x− y| < 1. We can split

|Kω(x)−Kω(y)| ≤
󰁝

Ω

|k(x, z)− k(y, z)| |ω(z)| dz

=

󰀣󰁝

Ω\B2(x)

+

󰁝

Ω∩(B2(x)\B2d(x))

+

󰁝

Ω∩B2d(x)

󰀤
|k(x, z)− k(y, z)| |ω(z)| dz.

We can estimate
󰁝

Ω\B2(x)

· · ·
oscillation

≲ |x− y|
󰁝

Ω\B2(x)

|ω(z)|
|x− z| |y − z| dz ≲ |x− y| 󰀂ω󰀂L1(Ω)

󰁝

Ω∩(B2(x)\B2d(x))

· · ·
oscillation

≲
󰁝

Ω∩(B2(x)\B2d(x))

|ω(z)|
|x− z|2 dz

󰁝

Ω∩B2d(x)

· · ·
decay
≲

󰁝

Ω∩B2d(x)

|ω(z)|
|x− z| dz +

󰁝

Ω∩B3d(y)

|ω(z)|
|y − z| dz
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Two functions

We need to control

α(d) = sup
x∈Ω

󰁝

Ω∩(B2(x)\B2d(x))

|ω(z)|
|x− z|2 dz and β(d) = sup

x∈Ω

󰁝

Ω∩B3d(x)

|ω(z)|
|x− z| dz

defined for d ∈ (0, 1]. By Hölder's inequality, we have

α(d) ≲
󰀣

sup
x∈Ω

󰀂ω󰀂Lp(Ω∩B2(x))

󰀤󰀕󰁝 2

2d

r1−2p′
dr

󰀖1/p′

≲ C

󰀣
22−2p′

2p′ − 2

󰀤1/p′ 󰀓
d2−2p′

− 1
󰀔1/p′

≲ C pd−2/p

and, similarly,

β(d) ≲
󰀣

sup
x∈Ω

󰀂ω󰀂Lp(Ω∩B3(x))

󰀤󰀣󰁝 3d

0

r1−p′
dr

󰀤1/p′

≲ C

󰀣
32−p′

2− p′

󰀤1/p′

d (2 − p′)/p′ ≲ C
p

p− 2
d 1−2/p,

where C = sup
x∈Ω

󰀂ω󰀂Lp(Ω∩B1(x)).
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Hölder continuity

We let

Lp
ul(Ω) =

󰀫
f ∈ Lp

loc(Ω) : 󰀂f󰀂Lp

ul(Ω) = sup
x∈Ω

󰀂f󰀂Lp(Ω∩B1(x)) < +∞
󰀬

be the uniformly-localized Lp space on Ω. Note that radius = 1 is not restrictive.

Theorem (Hölder continuity)

Let p ∈ (2,+∞). If ω ∈ L1(Ω) ∩ Lp
ul(Ω), then Kω ∈ C

0,1−2/p
b (Ω;R2) with

󰀂Kω󰀂L∞(Ω;R2) ≲ max
󰁱
1, 1

p−2

󰁲
(󰀂ω󰀂L1(Ω) + 󰀂ω󰀂Lp

ul(Ω))

|Kω(x)−Kω(y)| ≲ max
󰁱
1, 1

p−2

󰁲
(󰀂ω󰀂L1(Ω)+󰀂ω󰀂Lp

ul(Ω)) p |x−y|1−2/p ∀x, y ∈ Ω.

Remark: the result is not a surprise, since (for the Biot-Savart kernel)

CZ theory + Morrey's inequality ⇒ Hölder continuity.

However, our proof is surprising elementary!
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Uniformy localized Yudovich spaces

We let

Y Θ
ul (Ω) =

󰀻
󰀿

󰀽f ∈
󰁟

p∈[1,+∞)

Lp
ul(Ω) : 󰀂f󰀂Y Θ

ul (Ω) = sup
p∈[1,+∞)

󰀂f󰀂Lp

ul(Ω)

Θ(p)
< +∞

󰀼
󰁀

󰀾

be the uniformly-localized Yudovich space on Ω associated to Θ.

If ω ∈ L1(Ω) ∩ Y Θ
ul (Ω), then for all p ≥ 3 we have

|Kω(x)−Kω(y)| ≲ max
󰁱
1, 1

p−2

󰁲
(󰀂ω󰀂L1(Ω) + 󰀂ω󰀂Lp

ul(Ω)) p |x− y|1−2/p

≲ (󰀂ω󰀂L1(Ω) + 󰀂ω󰀂Y Θ
ul (Ω))Θ(p) p |x− y|1−2/p.

If d = |x− y| ≪ 1, then we can take p = | log d| ≫ 1 and observe that

Θ(p) p |x− y|1−2/p = Θ(| log d|) | log d| d1−
2

| log d| ≂ d | log d|Θ(| log d|)

since d
− 2

| log d| = exp( 2
log d · log d) = e2.
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Modulus of continuity ϕΘ

We let the function ϕΘ : [0,+∞) → [0,+∞) be such that ϕΘ(0) = 0 and

ϕΘ(r) =

󰀻
󰀿

󰀽
r (1− log r)Θ(1− log r) for r ∈ (0, e−2]

e−2 3Θ(3) for r > e−2.

We say that ϕΘ is the modulus of continuity associated to Θ and define

C0,ϕΘ

b (Ω;R2) =

󰀫
v ∈ L∞(Ω;R2) : sup

x ∕=y

|v(x)− v(y)|
ϕΘ(|x− y|) < +∞

󰀬
.

Corollary (ϕΘ-continuity)

If ω ∈ L1(Ω) ∩ Y Θ
ul (Ω), then Kω ∈ C0,ϕΘ

b (Ω;R2) with

󰀂Kω󰀂L∞(Ω;R2) ≲ 󰀂ω󰀂L1(Ω) + 󰀂ω󰀂Y Θ
ul (Ω)

|Kω(x)−Kω(y)| ≲ (󰀂ω󰀂L1(Ω) + 󰀂ω󰀂Y Θ
ul (Ω))ϕΘ(|x− y|) ∀x, y ∈ Ω.

Remark: we recover Yudovich's continuity modulus, with NO sharp tools!
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Existence

By definition of ϕΘ, note that󰁝

0+

dr

ϕΘ(r)
=

󰁝 +∞ dp

pΘ(p)
.

Theorem (Existence)

Let p > 2. Given ω0 ∈ L1(Ω) ∩ Lp
ul(Ω), there is a weak sol. (ω, v) of (E) such that

ω ∈ L∞
loc([0,+∞);L1(Ω) ∩ Lp

ul(Ω)), v ∈ L∞
loc([0,+∞);C

0,1−2/p
b (Ω;R2)).

Moreover, if ω0 ∈ L1(Ω) ∩ Y Θ
ul (Ω), then (ω, v) is such that

ω ∈ L∞
loc([0,+∞);L1(Ω) ∩ Y Θ

ul (Ω)), v ∈ L∞
loc([0,+∞);C0,ϕΘ

b (Ω;R2))

and, provided that ϕΘ is Osgood, (ω, v) is Lagrangian.

ODE theory: ϕΘ Osgood ⇒ there is a unique flow X such that d
dtX(t, ·) = v(t,X).

Lagrangian: the solution is such that ω(t, ·) = X(t, ·)#ω0 (push-forward).

Remark: it applies to Θ not BMO (e.g., Θ(p) ≂ pα) and to non-Biot-Savart kernels.
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Strategy of proof for existence

Warning: we cannot rely on the existence of smooth solutions!

Indeed, the kernel is general, so there are NO equations in velocity form.

We have to follow a different strategy:

1) construct a solution in L1 ∩ L∞ via time-stepping argument;
2) construct a solution in L1 ∩ Lp

ul by truncating the initial data;

3) show that the construction preserves the L1 ∩ Y Θ
ul -regularity.

To gain existence, we need a compactness criterion à la Aubin-Lions:

• the proof exploits the Dunford-Pettis, Lusin and Arzelà-Ascoli Theorems;
• we assume weak compactness, while usually one takes strong compactness.
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Compactness criterion

Theorem (Baby Aubin-Lions)

Let T > 0 and let (fn)n∈N ⊂ L∞([0, T ];L1(Ω)) be a bounded sequence which is
equi-integrable in space uniformly in time:

• supn∈N 󰀂fn󰀂L∞([0,T ];L1(Ω)) < +∞

• ∀ε > 0 ∃δ > 0 : A ⊂ Ω, |A| < δ ⇒ supn∈N 󰀂fn󰀂L∞([0,T ];L1(A)) < ε

• ∀ε > 0 ∃Ωε ⊂ Ω with |Ωε| < +∞ : supn∈N 󰀂fn󰀂L∞([0,T ];L1(Ω\Ωε)) < ε.

Assume that, for each ϕ ∈ C∞
c (Ω), the functions Fn[ϕ] : [0, T ] → R, given by

Fn[ϕ](t) =

󰁝

Ω

fn(t, ·)ϕ dx, t ∈ [0, T ],

are uniformly equi-continuous on [0, T ].
Then there exist a subsequence (fnk)k∈N and f ∈ L∞([0, T ];L1(Ω)) such that

lim
k→+∞

󰁝

Ω

fnk(t, ·)ϕ dx =

󰁝

Ω

f(t, ·)ϕ dx

for a.e. t ∈ [0, T ] and all ϕ ∈ L∞(Ω).
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Uniqueness

Theorem (Uniqueness)

Let Θ be such that ϕΘ is concave and Osgood. There is at most one (Lagrangian)
weak solution (ω, v) of (E) such that

ω ∈ L∞
loc([0,+∞);L1(Ω) ∩ Y Θ

ul (Ω)), v ∈ L∞
loc([0,+∞);C0,ϕΘ

b (Ω;R2)),

starting from ω0 ∈ L1(Ω) ∩ Y Θ
ul (Ω), v0 = Kω0.

Remark: our uniqueness result

• recovers (and actually improves) Yudovich's uniqueness theorem;
• is proved in a Lagrangian way, we do not use the energy method;
• does not rely on the specific structure of the Biot-Savart kernel.

Careful: Osgood velocity ⇒ any weak solution is Lagrangian, but this is delicate!

• Ambrosio-Bernard (2008) via superposition principle
• Caravenna-Crippa (2021) via integral curves
• Clop-Jylhä-Mateu-Orotobig (2019) via optimal transport
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Vlasov-Poisson (generalized) equations

Fix an antisymmetric kernel k (usually k(x) = κ
x

|x|d with κ = ±1) and consider

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

∂tf + F ·∇xf + Ef ·∇vf = 0 in (0, T )× R2d,

Ef (t, x) =

󰁝

Rd

k(x, y) 󰂄f (t, y) dy for t ∈ [0, T ], x ∈ Rd,

󰂄f (t, x) =

󰁝

Rd

f(t, x, v) dv for t ∈ [0, T ], x ∈ Rd,

f(0, ·) = f0 on R2d,

where f ∈ L∞([0, T ];L1(R2d)), f0 ∈ L1(R2d) and F ∈ L∞([0, T ];C(R2d;Rd)) is
such that divx F = 0 and, for some L ≥ 0,

sup
t∈[0,T ]

|F (t, x, v)− F (t, y, w)| ≤ L [|x− y|+ |v − w|] ∀x, y, v, w ∈ Rd.

Cases: F (t, x, v) = v is classical, while F (t, x, v) =
v󰁳

1 + |v|2
is relativistic.

Meaning: the time evolution of the density f of plasma consisting of charged
particles with long-range interaction (repulsive for κ = 1, attractive for κ = −1).

15/22



Admissible densities and modulus of continuity ϕΘ

We work in the class of admissible densities
AΘ([0, T ]) =

󰀋
f ∈ L∞([0, T ];L1(R2d)) : 󰂄f ∈ L∞([0, T ];Y Θ

ul (R
d))

󰀌

for some fixed increasing growth function Θ : [0,+∞) → (0,+∞). Examples:

• Θ(p) = c > 0 by Loeper (2006);
• Θ(p) = p by Miot (2016);

• Θ(p) = p
1
α for α ∈ [1,∞) by Holding-Miot (2018).

We want to study the regularity of the ('electric') vector field

Ef (t, x) = K󰂄f =

󰁝

Rd

k(x, y) 󰂄f (t, y) dy for f ∈ AΘ([0, T ]).

We define the modulus of continuity associated to Θ as

ϕΘ(r) =

󰀫
r | log r|Θ(|log r|) for r ∈ [0, e−d−1),

e−d−1 (d+ 1)Θ(d+ 1) for r ∈ [e−d−1,+∞).

Proposition (ϕΘ-continuity)

If f ∈ AΘ([0, T ]), then Ef ∈ L∞([0, T ];C0,ϕΘ

b (Rd;Rd)).

Remark: we recover regularity in [Loeper], [Miot] and [Holding-Miot] elementarily!
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Wasserstein stability

The 1-Wasserstein distance between f1L d, f2L d ∈ P1(R2d) is given by

W1(f1, f2) = sup
󰀝󰁝

R2d

ψ(f1 − f2) dL
2d : ψ ∈ Lip(R2d), Lip(ψ) ≤ 1

󰀞
.

Assume that the primitive ΦΘ(r) =

󰁝 r

0

ϕΘ(s) ds satisfies
󰁝

0+

dr󰁳
ΦΘ(r)

= ∞.

Theorem (Lagrangian stability)

If f1, f2 ∈ AΘ([0, T ];P1(R2d)) are two Lagrangian solution relative to (F1, E1),
E1 = Ef1 , and (F1, E1), E2 = Ef2 , with initial datum f1

0 , f
2
0 ∈ P1(R2d), then

sup
t∈[0,T ]

W1(f1(t, ·), f2(t, ·)) ≤ ΩΘ

󰀃
W1(f

1
0 , f

2
0 ), 󰀂F1 − F2󰀂L∞

󰀄

Uniqueness: in particular, if f1
0 = f2

0 and F1 = F2, then f1 = f2.

Lagrangian: f(t, ·) = (X,V )(t, ·)#f0, where (X,V )(t, ·) solves the ODE
󰀫
Ẋ = F (t,X, V )

V̇ = Ef (t,X)
with X(0) = x, V (0) = v.
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Why an Osgood condition on the primitive of ϕΘ?

Schematically, we are dealing with an ODE of the form
󰀫
Ẋ = F (t,X, V )

V̇ = E(t,X)
with X(0) = x, V (0) = v,

where F ∈ Lipb and E ∈ C0,ϕΘ

b .

Assume F (t,X, V ) = V and E(t,X) = ϕΘ(X) for simplicity. Then
󰀫
Ẋ = V

V̇ = ϕΘ(X)
with X(0) = x, V (0) = v,

which is a 2nd order problem!

Assume d = 1 and X(0) = V (0) = 0 for simplicity. Then
d

dt

Ẋ2

2
= ϕΘ(X) Ẋ and

Ẋ2(t) = 2

󰁝 t

0

ϕΘ(X(s)) Ẋ(s) ds = 2ΦΘ(X(t)).

Hence uniqueness for the ODE requires
󰁝

0+

Ẋ(t) dt󰁳
ΦΘ(X(t))

=

󰁝

0+

dr󰁳
ΦΘ(r)

= ∞.
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Existence of Lagrangian admissible solutions

We just work with k(x) = ± x

|x|d and d = 2, 3.

Theorem (Existence)

If ϑ ∈ Y Θ(Rd) satisfies

ϑ ∕≡ 0, ϑ ≥ 0 and
󰁝

Rd

(1 ∨ |x|)ϑ(x) dx < +∞,

then there is a Lagrangian solution f ∈ AΘ([0, T ]) starting from the initial datum

f0(x, v) =
1(−∞,0]

󰀓
|v|2 − ϑ(x)

2
d

󰀔

|B1| 󰀂ϑ󰀂L1

, for x, v ∈ Rd,

such that f(t, ·)L 2d ∈ P1(R2d) for all t ∈ [0, T ] and

C 󰀂ϑ󰀂Lp ≤ 󰀂󰂄f󰀂L∞([0,T ];Lp) ≤ CT 󰀂ϑ󰀂Lp for all p ∈ [1,+∞) ,

for some constants C,CT > 0, where CT depends on T .

Remark: the result is based upon the deep existence theorem by [Lions-Perthame].
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Am I cheating about existence?

Note that we start with ϑ ∈ Y Θ(Rd) such that

ϑ ∕≡ 0, ϑ ≥ 0 and
󰁝

Rd

(1 ∨ |x|)ϑ(x) dx < +∞,

and find a Lagrangian admissible solution with

C 󰀂ϑ󰀂Lp ≤ 󰀂󰂄f󰀂L∞([0,T ];Lp) ≤ CT 󰀂ϑ󰀂Lp for all p ∈ [1,+∞) .

Achtung! Any (non-zero) 0 ≤ ϑ ∈ Cc(Rd) meets the requirements!

Hence the existence becomes truly interesting if ϑ also satisfies inf
p≥1

󰀂ϑ󰀂Lp

Θ(p)
> 0.

We have non-trivial existence for any Θm given by

Θm(p) = p log(p)2 log log(p)2 · · · log log · · · log󰁿 󰁾󰁽 󰂀
m times

(p)2.

Proposition (Saturation of Θm)

For each m ≥ 0, ΦΘm satisfies the Osgood condition and there is ϑm ∈ Y Θm(Rd)
with compact support satisfying all the requirements above.

Remark: we recover the existence results in [Miot] and [Holding-Miot].
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Futurama

Project 1: for 2D Euler equations remove the L1 assumption, dealing with weak
solutions in Y Θ

ul for suitable Θ, in collaboration with G. Ciampa and G. Crippa.

Project 2: for Vlasov-Poisson (generalized) system, prove that the Lagrangian
assumption is not needed à la Ambrosio-Bernard, in collaboration with M. Inversi.

Other ideas: more general functional spaces? other equations?
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Thank you for your attention!
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Proof of uniqueness 1/4

Assume (ω1, v1) and (ω2, v2) are two Lagrangian solutions with same initial datum.

We can thus write ωi = Xi(t, ·)#ω0 where Xi is the flow associated to vi, i = 1, 2.

Fix T > 0 and consider t ∈ [0, T ]. We start with the usual splitting

|X1 −X2| ≤
󰁝 t

0

|v1(s,X1)− v2(s,X2)| ds

≤
󰁝 t

0

|v1(s,X1)− v1(s,X2)| ds+
󰁝 t

0

|v1(s,X2)− v2(s,X2)| ds.

The first term is easy, we can use the ϕΘ-continuity and obtain

|v1(s,X1)− v1(s,X2)| ≲ ϕΘ(|X1 −X2|),

with implicit constant depending on 󰀂ω1󰀂L∞([0,T ];L1∩Y Θ
ul ).
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Proof of uniqueness 2/4

The second term is delicate. We use v = Kω and the push-forward to get

|v1(s,X2)− v2(s,X2)| = |(Kω1)(s,X2)− (Kω2)(s,X2)|

=

󰀏󰀏󰀏󰀏
󰁝

Ω

k(X2, y)ω1(s, y) dy −
󰁝

Ω

k(X2, y)ω2(s, y) dy

󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏
󰁝

Ω

k(X2, X1(s, y))ω0(y) dy −
󰁝

Ω

k(X2, X2(s, y))ω0(y) dy

󰀏󰀏󰀏󰀏

≤
󰁝

Ω

|k(X2, X1(s, y))− k(X2, X2(s, y))| |ω0(y)| dy.

We combine the two estimates and obtain

|X1 −X2| ≤
󰁝 t

0

ϕΘ(|X1 −X2|) dt

+

󰁝 t

0

󰁝

Ω

|k(X2, X1(s, y))− k(X2, X2(s, y))| |ω0(y)| dy dt.

Now choose the finite measure µ = ω̄L 2, with ω̄ = |ω0|+ η and 0 < η ∈ L1 ∩ L∞.
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Proof of uniqueness 3/4

We integrate with respect to µ. By Tonelli Theorem, we can estimate
󰁝

Ω

󰁝

Ω

|k(X2(s, x), X1(s, y))− k(X2(s, x), X2(s, y))| |ω0(y)| dy dµ(x)

=

󰁝

Ω

|ω0(y)|
󰁝

Ω

|k(X2(s, x), X1(s, y))− k(X2(s, x), X2(s, y))| dµ(x) dy

=

󰁝

Ω

|ω0(y)|
󰁝

Ω

|k(x,X1(s, y))− k(x,X2(s, y))|X2(s, ·)#ω̄(x) dx dy

(!)

≲
󰁝

Ω

|ω0(y)|ϕΘ(|X1(s, y)−X2(s, y)|) dy

≤
󰁝

Ω

ϕΘ(|X1(s, y)−X2(s, y)|) dµ(y).

Inequality (!) follows from the same computations for the ϕΘ-continuity of velocity.

The implicit constant depends on 󰀂ω̄󰀂L∞([0,T ];L1∩Y Θ
ul ). But ω̄ = |ω0|+ η, so we can

choose η ∈ L1 ∩ L∞ to let the constant depend on 󰀂ω0󰀂L∞([0,T ];L1∩Y Θ
ul ) only!
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Proof of uniqueness 4/4

In conclusion, we get

󰁝

Ω

|X1 −X2| dµ ≲
󰁝 t

0

󰁝

Ω

ϕΘ(|X1 −X2|) dµ dt.

But ϕΘ is concave and Osgood, so that

󰁝

Ω

ϕΘ(|X1 −X2|) dµ
Young
≤ ϕΘ

󰀕󰁝

Ω

|X1 −X2| dµ
󰀖

and thus

ξ(t) ≤
󰁝 t

0

ϕΘ(ξ(s)) dt, ξ(s) =

󰁝

Ω

|X1(s, ·)−X2(s, ·)| dµ,

imply that X1 = X2 for all t ∈ [0, T ], which means ω1 = ω2 and so v1 = v2.
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