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No paradoxes without utility
Around 1675 Newton and Leibniz discovered Calculus and nowadays derivative is a
basic tool of any mathematician.

Somewhat surprisingly, the first appearance of the concept of a fractional
derivative is found in a letter written to De 'Hopital by Leibniz in 1695!

1

What is the “half derivative” of z? It’s ;ﬁf = cy/x (With ¢ = % by Lacroix, 1819).
€T2

Leibniz's answer to De L’'Hopital, 30 September 1695:

‘Il'y a de l'apparence qu'on tirera un jour des consequences bien utiles de ces
paradoxes, car il n’y a gueres de paradoxes sans utilité.”

“This is an apparent paradox from which, one day, useful consequences will be
drawn, since there are no paradoxes without utility.”
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The fractional derivative: an old story, many definitions

Today there are many fractional derivatives. Three famous examples:

. : dz™ Lm+1) .,
Leibniz-Lacroix (1819): e~ Tm—atl)
t
Riemann-Liouville (1822-1847). EEDf(t) = ﬁ% / ( tf_(TT))a
t /
Caputo (1967):  “Df(t) = T 17 ) / (tf(:))a dr.

Some observations on fractional derivatives:
e they work on functions of just one variable;
e constants can have non-zero fractional derivative;
e they may need differentiable functions!

Question: What about a fractional gradient? Can we just take (D2 ,..., D% )?

Problem: the 'coordinate approach’ does NOT ensure invariance by rotations!
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A ‘physical’ approach: invariance properties

Silhavy proposed that a (physically) 'good’ fractional derivative should satisfy;
e invariance with respect to translations and rotations;
e a-homogeneity for some a € (0,1);
e mild continuity on smooth functions.

For f € Lip,(R"™) and ¢ € Lip,(R™; R™), we consider

V1) = o [ LD g

N R

divip(z) = un,a/ (w(ygwﬁgiﬁ L) dy € R,

n

whenever x € R™, where u,, > 0 is a renormalizing constant.

Theorem (Silhavy, 2020)

Ve and div® are determined (up to mult. const.) by the three requirements above.
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A glimpse of the literature

Appearance

1959 Horvath (earliest reference up to knowledge)
196 | Nikol'ski-Sobolev (implicitly mentioned)

Variants, motivated by non-local interactions
197 | Edelen-Laws+Green: thermodynamics & Continuum Mechanics
2011-12-15 Caffarelli-Vazquez+Soria, Biler-mbert-Karch: porous medium equation

Current research

20 15- 18 Shieh-Spector: fractional PDE theory (systematic study of V<)
2017-.. Spector et al.. optimal embeddings, potential theory

2019-.. Comi-S et al: distributional theory for functions and sets

2020-... Silhavy;: distributional approach (introducing div®) & elasticity
2020-... Bellido-Cueto-Mora-Corral: polyconvexity & Continuum Mechanics
2022-... Kreisbeck-Schénberger: quasiconvexity

2023 Braides et al.: homogenizations
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Links with fractional Laplacian, Riesz potential/transform and duality

Fractional Laplacian: —div’ ve = (—A)QTH?, where

(—A)%f(x) _ fly) = f(z) d

re |y — [t

Riesz potential: V® = VI;_, and div* = divl;_,, where

Lt =ens [ 2D scom

re [T —y["e
Riesz transform: V® = R(—A)% and div® = 'R (—~A)%, where
Rf(z) = cn/ (f(y) = f(@))(y — ) dy.

ly — [+

Integrability: f,¢ € Lip, = Vf, divip € L' N L>.
Duality: the integration-by-parts formula

fdivagodm:—/ w-Vfdx
RTL

n

holds for f e Lip (R™) and ¢ € Lip_(R™;R™).
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Leibniz’s rules for vV and div®

If f.g € Lip (R™), then

V¥ (fg) = fVe9+gVef+Vi(f.9)
where

VﬁL(f,g)(a?) _ Mn.a/ (f(y) — f(2)(9(y) — g(l'))(y )

[y =l

dy, x€R"™

Similarly, if f € Lip (R™) and ¢ € Lip (R™;R™), then

div®(f) = fdivie + ¢ - VO f + divi(f.9),
where

N RLOE CICORELIRTE,

n ly — x|ntatl dy, = eR"

Approximation scheme
e V* & div* linear = use convolution = smoothing
e Lebniz’s rules (check NL!) = use cut-off functions = compact support
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A fractional version of the Fundamental Theorem of Calculus

Theorem (Silhavy, 2020; Comi-Stefani, 2019)
If f e C>(R™), then
Ve (y —
f(x) — Nnﬁoc M dy

re |y —z[roett

for any 2,y € R™ (ie, f = dv “Vf).

Good news:

e LP-control on translations = compactness for bounded sequences
o RHS < 1,,|VYf| = Sobolev embedding for p € (1,+00)

Bad news:
e RHS on whole space = NO local Poincaré inequality

o RHS delicate for p=1 = finer analysis in the fractional BV setting
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Distributional fractional Sobolev (aka Bessel) functions

For p € [1,4+00], we define the distributional fractional Sobolev space
SeP(R") = {f € LP(R™) : IV*f € LP(R™;R")}

endowed with the norm || fllser = || fllze + IV £l -

Here Vo f € LL (R™;R™) is the weak fractional gradient of f € LP(R"), ie.

loc

n

fdiva<pd:r:—/ ©-Vfdr forall p e CFR™R").
Rn

Theorem (Brug-Calzi-Comi-S, 2020; Kreisbeck-Schonberger 2022)
If p € (1,+00), then S*P(R™) = L*P(R™), where
LoP(R") = {f cS'(RY): (I—A)ife LP(R")}

is the Bessel potential space.

ool lsar

Meaning: '"H = W-type result’, since L*P(R") = C°(R") for p € [1,+00).

Application: parallel Sobolev theory (PDES, functionals) for Bessel potential spaces.
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Distributional fractional BV functions
Given p € [1,+00], the fractional variation of f € LP(R™) on an open 2 C R™ is
D7l = sw{ [ fivipde s p € CEOURY, ol <1
We define the distributional BV *(§) space
BV*r(Q) = {f € I'(R") : |D*|(Q) < +o0}
endowed with the norm || f|| gver (o) = IfllLr@n) + [ D f1(£2).
Theorem (Comi-S, 2019, Comi-Spector-S, 2022)
Measure: f € BVeP(Q) < [ fdiv¥pdr = 7/ ©-dD" f for ¢ € C=(Q;R™).

Rn
(sc: |Df|(9) is Lsc. with respect to convergence in LP(R™).
Density: C°(R™) is dense in BV*P(R") for p € {1, #)
Embedding: BV*?(R™) C L#-= (R") for p € [1, — a) andn > 2.

Compactness: BV*?P(R™) C L (R") is compact for p € [1 —)

'n—a
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Distributional fractional perimeter and fractional reduced boundary
We now focus on the special case f = xg for some measurable set E C R™.
Given any open set Q C R™, we let
|DYxg|(R2) = sup{/ dv®pdz : ¢ € C°(Q;R™), lloll oo (s Ry < 1}
E

be the distributional fractional (Caccioppoli) perimeter of E inside Q.

We adopt De Giorgi's idea to define a fractional analogue of the reduced boundary.

The fractional reduced boundary .Z~E (inside Q) is the set of points

where v (z) is the fractional (inner unit) normal at z € QN F*E.

c Sn—l

We thus have the Gauss-Green formula

/ dv*pdr = —/ - ve dDg|
B QNFoE

for all ¢ e Lip,(€;R™).

12/24



Comparison with the WP framework [ 1/2]

For p € [1,400) and a € (0,1), we let

WP (R™) = {f € LP(R") : Ww(]R / / |x = |n+pa dxdy < +oo}

endowed with the norm || f|lwer e = [|fllze + [Flwer-

By definition, Vo : Wel(R?) — L (R™;R™) with |V £l 1 < fina [flwer.

Theorem (Comi-S, 2019)

o WaL(R™) C S¥}(R™) ¢ BV*(R™) continuously and strictly!
e0<f<a<l = BVYR") c WAL(R")

Theorem (Comi-S, 2019: Brué-Calzi-Comi-S, 2022)
epe (l,+00) = SoTeP(R™) C WeP(R") C S*°P(R")
epe€[l,2) = W*(R") C S“P(R"™)
o W*2(R") = S*2(R")
epc(2,+txc]and0<a< <1 = WALR"?) C S*P(R")
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Comparison with the WP framework [2/2]

The fractional perimeter in an open set  C R™ of a measurable set E C R" is

Ixe(=) —xe()| // Ixe(@) —xe)l
P, (E;Q) = d dy + 2 dx d
(E:9) /Q 0 le—grte |n+a "o |x— S dady

fQ = R™, then Pa(E;Rn) = Pa(E) = [XE]Wa,l(Rn).
Theorem (Comi-S, 2019)

o Po(E;Q) < oo = |D*XxE|(Q) < finaPa(E; Q) With D*xg = VOxg £

n,o v
* x5 € BV(R") = Vxs(c) = - fa — / ™ ;Eﬁal d|Dxg|(y)

o |Dg| < Z™ and |[D¥xg|(Q) >0 = L*(QNF2E)> 0!

Careful: Py (E;Q) < 400 = F2F is diffuse (recall that we! c §«1).

Example: B = (a.b) C R = #°E = R\ {22}/
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Two examples: the ball and the halfspace
Recall that V* is invariant by translations and rotations in R™.

Ball. For z € R™ with |z] # 0,1, we have

o Mn« xT
\Y XB; (JJ) = 771 Ta—1 gn,a(|$‘) m,
where
Y1 —1
nalt) = — " >0, foranyt>0.
el = [ e () ’
As a consequence, v (x) = —“—77' for anyz # 0 and 7B, = R\ {0}.
X

Halfspace. Letting Hf = {x e R" : 2z -v > 0} for v € S"7 !, if - v # 0 then

2wy 1
VAT () ol

As a consequence, 7 H,” = R™ and vf = v.

VaXHj (z)
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Density estimates
Now we g0 back to sets with locally finite distributional fractional perimeter.
The fractional reduced boundary allows for local upper density estimates.

Theorem (Comi-S, 2019)

It xe € BV>*(R") and z € F*E, then there exists r, > 0 such that

|IDxe|(Br(z)) < Apor™™*  and |D*XEnB, ()| (R") < Bpar™™*
for all » € (0,7,), where A,, o, B > 0 are universal constants.

Integration-by-parts on balls (Comi-S, 2019)
It x5 € BV2>°(R™) and z € F*E, then for all ¢ € Lip (R™) andae.r > 0

loc
/ div® o dy+ / ©-VXB, () dy+ / diviL (X B,.(2), ) dy = — / ©-D%xE.
ENB,.(z) E E Br.(x)

By a standard covering argument, we thus get that
|ID*Eg| < Cpo A" *LF*E  sothat dimy(F*E) >n—a.

Recall that dimye (F*E) = n in the W*! regime (in particular, for BV sets)!



Fractional De Giorgi's Blow-up Theorem

The blow-ups at =z € R™ of a set E C R™ are the family

Tan(E,z) = {limit points of (£%) ;) in L, (R™) as r — 0+}.

We can prove a fractional analogue of De Giorgi's Blow-up Theorem.

Theorem (Comi-S, 2019)
f xg € BV2°(R") and x € F*E, then:

loc
e existence: Tan(E,z) # 0

e rigdity: F € Tan(E,z) = v&(y) = v&(z) for |D*xr|-ae. y € FOF.

Open Problem: How to characterize blow-ups?

Bad News Theorem (Comi-S, 2019-22)
The coarea formula and the local chain rule do NOT hold!

D f| # /R IDx(sopldt  and  |DO®(f)] # || D]
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Further properties of blow-ups

Let xg € BV 2™ °(R") and 2 € Z*E and assume that v¢(z) = €,.

Theorem (Comi-S, 2023)
f F €tan(E,x),then FF = R"~! x M with M C R such that
e xu € BV (R) with 9%xar > 0;
o |M|,|M¢| € {0,400}
o |M| =400 = esssUpM = +oo;
e M # (R is such that P(M) < +00 = M = (m,+o0) for some m € R.

Consequence: halfspaces and R™ are the ONLY blow-up cones!
Theorem (Comi-S, 2023)
Assume f € BV > (R™).
e D¥f =0 < D,;f =0whatever i € {1,... ,n}
D f =0 = 3Jg e BV (R" ") suchthat f((z1,2")) = g(«’) ae. and
(Dg.)if = L' @ (Dgu-i)ig fori=2,....n
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Non-local boundaries [ 1/2]
xe € BV (R") = D% = Dgxp + D¢xp, Dioxp < £, Déxp L 2"

Theorem (Schénberger, 2023; Comi-S, 2023)
Locality of singular part: D¢xenr = xr1 D¢ xE Whenever P, (F) < +o0o

Notation: F* = qx € R* : 3 lm [0 B (@) =t whenevert € [0,1].
r—0+ |BT($)|
Theorem (Comi-S, 2023)

Dg¢xgp(F') = 0 whenever xyp € W*L(R™) with either [ENF|=00r |[ECNF| =0
Notation: 0~ F = {z € R" : 0 < |E N B,(z)| < |B,(z)| for all » > 0}.
Corollary: supp(|Dg¢xk|) C 0~ E and s0 |D¢x k| < Cpo A" L (F*ENJ™E)
Analogies with classical results [De Giorgi's Theory & Lombardini, 20 9]

* Xg € BVi(R") = supp(|Dxz|) =07 FE

o xg € WI(R") = 97E = {z € R": [xglwa1(s,@) > 0 for all r > 0}

Caltion: there exists F c R™ suchthat P(E) < +o00 and £ (0™ E) = +oo! oiod



Non-local boundaries [2/2]

Exercise (measure-theoretic interior and exterior)
If z € R® and E c R" is measurable, then

Tan(E,z) = {R"} & z€ E' and Tan(E,z)={0} < z€E°
Notation: 9*E = R™ \ (E° U E*) is the measure-theoretic boundary,

Definition (Effective fractional reduced boundary)

We define 0 E = Z*E N 0*E whenever xg € BV, (R™).
Theorem (Comi-S, 2023)

e xg € BVS(R"),z € Z&E, Tan(E,z) = Hf for v e "' = vg(z) =v

o xg € WH'(R") = A" %(FLE)=0

e Xg € BVy(R") = FE C FOE, #"Y(FSE\ FE)=0,v% =vg on FE
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Asymptotics

L D(ntetl) g
Now important: =247~ 3 2 ~ asa — 1-.
SRR Y r(%e) "B

Asymptotics for a — 17 (Comi-S, 2019) — Bourgain-Brezis-Mironescu
o feWIP(R") = Vf — Vfin LP whenever p € [1,+00).
e f€BV(R") = D*f = Df, |D*f| = |Df|, [D*f|(R") — [Df|(R").

Asymptotics for a — 0t (Brue-Calzi-Comi-S, 2020) — Maz'ya-Shaposhnikova
* f€Uaeny W (R™) = V°f — Rf in LP whenever p € (1,+00).

o f€ H'R") NUpeony W' (R™) = V*f > RfinL'andin H'.

¢ F e Uncon WHRY = o [ [V2/@]de e

f(z)dz|.
]R'n.

Notation: The Hardy space is H* = {f € L'(R") : Rf € L*(R™)} (with R = V°).
Update: distributional BBM formula obtained by [Brezis-Mironescu, April 2023)]!
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Fractional interpolation inequalities
We prove V* — R strongly as o — 0% via fractional interpolation inequalities.

Theorem (Brue-Calzi-Comi-S, 2020)
Let a € (0,1]. There exists ¢, > 0 such that

a—8
DA FI(R™) < Cnall £l 5 gy |1 D FI(RT)

for all B € [0,a] and all f € H'(R™) N BV*(R™).

B
@

Theorem (Brue-Calzi-Comi-S, 2020)
Let p € (1,400). There exists ¢, > 0 such that

”va”LP(]R" R™) < Canv fHLp(R . R )||V0‘f||Lp(R i R™)
foralo<y<B<a<1landal fe S*(R"). There exists ¢, > 0 such that
a—f B=vy
”VBJCHHl(R";R") < CnHv’Yf”juﬁan;Rn) ||Vaf||;ﬁan;Rn)
forallo<y<pB<a<landall f € HS*(R").

HS*YR™) = {f € H'(R") : V*f € H'(R";R")} is the Hardy-Sobolev space.
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-convergence

Definition (T'-convergence after De Giorgj)

We say that Fj,: (X,d) — R I'-converge to F': (X,d) — R if
oz, — 1 = F(x) <liminfy F(zy)
o Vz € X Jz;, — x such that F(z) > imsup, F(zk)

I'-convergence as o — 1~ (Comi-§, 2022)  — Ambrosio-De Philippis-Martinazzi
Let @ c R™ be a bounded open set with Lipschitz boundary or © = R™.
 fEBV(Q) = I(L)- lm_|D*f|(Q) = |DfI(Q)
a—1-

o E C R" measurable = I['(Lj,) - lm |D%xg|(Q) = P(E;Q)
a—1-

Why is T-convergence interesting? Minimizers of Fj. converge to minimizers of F'!
Possible application: regularity of distrioutional non-local minimal surfaces.

Update: similar I'-convergence results obtained by [Brezis-Mironescu, April 2023]!

Remark: asymptotics and I'-convergence can be generalized to o — ag € (0,1].
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Open problems and research directions

About sets and perimeter

> Is there a set with .#"-negligible fractional reduced boundary?

> What are 1D profiles of blow-ups?

> Are balls isoperimetric sets for the fractional variation?

> What about minimal surfaces for the fractional variation (existence, reqularity)?

About functions and variation

> Do BV P functions satisfy some good local properties?
e precise representatives? (SPOILER)
e absolute continuity properties of the fractional variation? (SPOILER)
e approximate limits? jumps?

> Can BV P functions be defined on a general open set Q c R"™?

WAOM éﬂmg{m iltuitiow!
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