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What are denoising models?

In image processing, denoising preserves the most significant features of an image
while removing the background noise.

Source: Wikipedia

Total variation denoising models

Setting: screen ⇝ Rn , source image (corrupted) ⇝ f , final image (denoised) ⇝ u.

min
u∈BV (Rn)

[u]BV +
Λ
p



Rn
|u − f |p dx

where p ∈ [1 ,∞) and Λ > 0 is the fidelity.

Applications: gravitational-waves (2018) and black hole in Messier 87 galaxy (2019)
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Important models: ROF vs CE

min
u∈BV (Rn)

[u]BV +
Λ
p



Rn
|u− f |p dx

p = 2 ⇝ Rudin-Osher-Fatemi (ROF) model (1992)

◮ preserves sharp discontinuities (edges), removes fine scale details
◮ allows for discontinuities, disfavors large oscillations
◮ strictly convex, hence uniqueness of minimizer u = u(f , Λ)
◮ NOT contrast invariant: u solution for f , cu not solution for cf with c > 0

p = 1 ⇝ Chan and Esedoglu (CE) model (2005)

◮ contrast invariant
◮ convex but NOT strictly, hence non-uniqueness of minimizers
◮ depends on the shape of the images
◮ level-set decoupling via coarea formula

[u]BV =



R
P({u > t}) dt
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The importance of total variation: local vs non-local

Local BV
◮ quite efficient in reducing the noise and reconstructing the main features
◮ scarcely preserves the details and textures of the datum

Non-local BV
◮ good for digital images/filters
◮ weights the affinity between different parts/pixels in the image
◮ considers both geometric parts and textures

Source: Dipierro-Valdinoci (2018)
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What is non-local variation?

Keep in mind: non-local = ' distant points count'

Non-local total variation with kernel K

[u]BV K =
1
2



Rn



Rn
|u(x)− u(y)|K (x − y) dx dy

where K ≥ 0 is a kernel

Important examples:

◮ K ∈ L1 (Rn) gives [u]BV K ≤ KL1 uL1 [Mazón-Solera-Toledo]

◮ K (x) = 1
|x |n+s gives the Gagliardo-Slobodeckij-Sobolev seminorm for p = 1 ,

[u]W s ,p =



Rn



Rn

|u(x)− u(y)|p
|x − y |n+sp dx dy

1/p
for p ∈ [1 ,∞)

[Bessas], [Bessas-S.], [Novaga-Onoue]

Others: [Buades-Coll-Morel], [Kindermann-Osher-Jones], [Gilboa-Osher], [Antil-Diíaz-Jing-
Schikorra] using [Comi-S.] and more...
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Plan

STEP 0. We choose a kernel K ≥ 0 and define the (non-local total) K -variation

[u]BV K =
1
2



Rn



Rn
|u(x)−u(y)|K (x−y) dx dy .

STEP 1. We study the fundamental properties of the space

BV K (Rn) =


u ∈ L1 (Rn) : [u]BV K < ∞

.

STEP 2. We use the theory of BV K functions to study the L1 -denoising model

min
u∈BV K (Rn)

[u]BV K +Λ


Rn
|u−f | dx

STEP 3. We study the associated non-local Cheeger problem.
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The space of functions with finite K -variation

Let K ≥ 0 be a kernel on Rn . We focus on non-integrable kernels K /∈ L1 (Rn) only.

The non-local K -variation of u ∈ L1
loc(R

n) is

[u]K =
1
2



Rn



Rn
|u(x)− u(y)|K (x − y) dx dy ,

so BV K (Rn) =


u ∈ L1 (Rn) : [u]K < ∞

. The K -perimeter is PK (E ) = [χE ]K .

Basic properties

• isometries: [ · ]K is translation invariant, homogeneous and [c]K = 0
• min-max: [u ∧ v ]K + [u ∨ v ]K ≤ [u]K + [v ]K
• Fatou: uk → u in L1

loc(R
n) =⇒ [u]K ≤ lim infk [uk ]K

• coarea formula: [u]K =



R
PK ({u > t}) dt

• BV ⊂ BV K : [u]K ≤ max

uL1 , 1

2 [u]BV


Rn
(1 ∧ |x |)K (x) dx
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Sequential compactness in W K ,p

To prove existence of minimizers u = u(f , Λ), we need compactness in BV K .

We work in the more general space W K ,p ⊂ Lp with p ∈ [1 ,+∞) and

[u]K ,p =


1
2



Rn



Rn
|u(x)− u(y)|p K (x − y) dx dy

1/p

For p = 1 we recover [u]K ,1 = [u]BV K and W K ,1 = BV K .

Sequential compactness [Bessas-S.], [Foghem Gounoue in Ph.D. thesis]

K /∈ L1 (Rn), K ∈ L1 (Rn \ Br ) for all r > 0

⇓
(uh)h ⊂ W K ,p bounded =⇒ ∃ subsequence (uhj )j Lp

loc-converging to u ∈ W K ,p

Idea of proof: Tη(u) = u ∗ η is Lp → Lp locally compact for η ∈ L1 and

u − Tηδ
(u)Lp ≲ Kδ−1/p [u]K ,p

for ηδ = Kδ/KδL1 and Kδ = K 1Rn\Bδ
. Note that KδL1 → ∞ as δ → 0+.
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Isoperimetric inequality

For v > 0 , we let Bv = Brv with rv = (v/|B1 |)1/n , so that |Bv | = v .

Isoperimetric inequality [Bessas-S.], [Cesaroni-Novaga], [De Luca-Novaga-Ponsiglione]

K radially symmetric decreasing =⇒ PK (E ) ≥ PK (B|E |), with |B|E || = |E |

equality ⇐⇒ E is a ball, if K radial+ in a ngbh of the origin

Idea of proof: Apply Riesz rearrangement inequality to

PK (E ) =

 KL∞

0
|E | |{K > t}|−



Rn



Rn
1E (x) 1E (y) 1{K>t}(x − y) dx dy dt

noticing that {K > t} = BR(t) is a ball for some R(t) ∈ [0 ,∞].

Open problem: find isoperimteric sets for K /∈ L1 NOT radially symmetric!

Corollary [Bessas-S.]

K radially symmetric decreasing =⇒ [u]K ≥ [u]K

equality ⇐⇒ u ≥ 0 , {u > t} is a ball, if K radial+ in a ngbh of the origin

where u is the symmetric decreasing rearrangement of u (apply coarea formula).
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Monotonicity formula

Assume K is q-decreasing: |x | ≤ |y | =⇒ K (x)|x |q ≥ K (y)|y |q for q ≥ 0 .

Fun fact: q-decreasing for q ≥ n + 1 =⇒ BV K functions are constant! [Brezis]

Monotonicity [Bessas-S.]: 0 < r ≤ R < +∞ =⇒ PK (rE )

|rE |2− q
n
≥ PK (RE )

|RE |2− q
n

Idea of proof: Observe that (for simplicity, K is symmetric)

PK (λE ) =



λE



(λE)c
K (x − y) dx dy = λ2n



E



E c
K (λ(x − y)) dx dy

for λ > 0 by changing variables, then apply q-decreasing assumption.

Isoperimetric inequality for small volumes [Bessas-S.]

K radial and q < n + 1 : |E | ≤ |B| =⇒ PK (E )

|E |2− q
n
≥ PK (B)

|B|2− q
n

Gagliardo-Nirenberg-Sobolev for finite support [Bessas-S.]

u ∈ BV K with |supp(u)| < ∞ =⇒ u
L

n
2n−q ,1 ≤ C iso

n,q,|supp(u)| [u]K .
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Intersection with convex sets

Assume K is radial, 1 -decreasing and


Rn
(1 ∧ |x |)K (x) dx < ∞.

Intersection with convex sets [Bessas-S.]

|E | < ∞ =⇒ PK (E ∩ C) ≤ PK (E ) for all C ⊂ Rn convex

Idea of proof [Figalli-Fusco-Maggi-Millot-Morini]: After reducing to C = H half-space
and E bounded, for x0 ∈ ∂H and BR(x0 ) ⊃ E one can estimate

PK (E )− PK (E ∩ H) ≥ PK (F ;BR(x0 ))− PK (H;BR(x0 ))

where F = E ∪ H and

PK (F ;A) =


E∩A



E c∩A
+



E∩A



E c∩Ac
+



E∩Ac



E c∩A


K (x − y) dx dy

is the K -perimeter of F relative to A. The conclusion follows from

Local minimality of half-spaces [Pagliari], [Cabré]

H is a half-space, 0 ∈ ∂H =⇒ PK (H;BR) ≤ PK (E ;BR) if E \ BR = H \ BR

K -Archimedes: A ⊂ B with A convex and |B| < +∞ =⇒ PK (A) ≤ PK (B)
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Functional K -variation denoising problem with L1 fidelity

Data: Rn screen, f ∈ L1
loc corrupted image and Λ > 0 fidelity.

We study the functional K -variation L1 denoising problem

(FP) min
u∈L1

loc(R
n)
[u]BV K + Λ



Rn
|u − f | dν

where ν ∈ W(Rn) = {ν = wL n : w ∈ L∞, infRn w > 0} an L∞-weight measure.

Why L∞-weight measures? ⇝ deep learning

◮ do not alter the L1 nature of the approximation term
◮ more flexibility, adding a degree of freedom in the fidelity
◮ Λ > 0 keeps its role of global Lagrangian multiplier
◮ ν secondary local fidelity parameter (emphasis on specific regions only)

Source: Sun-Parwani 12/21



Existence and basic properties for (FP)

Call FSol(f , Λ, ν) the set of solutions of the functional problem

(FP) min
u∈L1

loc(R
n)
[u]BV K + Λ



Rn
|u − f | dν

Existence for (FP) [Bessas-S.]

K /∈ L1 (Rn), K ∈ L1 (Rn \ Br ) for all r > 0 =⇒ FSol(f , Λ, ν) ∕= ∅ for f ∈ L1 (Rn)

Idea of proof: Use lsc of energy and compactness in BV K .

Basic properties of F-solutions

◮ FSol(f , Λ, ν) ⊂ L1
loc is convex and closed

◮ uj ∈ FSol(fj , Λ, ν), fj → f in L1 , uj → u in L1
loc =⇒ u ∈ FSol(f , Λ, ν)

◮ FSol(f + c , Λ, ν) = FSol(f , Λ, ν) + c
◮ FSol(cf , Λ, ν) = c FSol(f , Λ, ν)
◮ u ∈ FSol(f , Λ, ν) =⇒ u+ ∈ FSol(f +, Λ, ν), u− ∈ FSol(f −, Λ, ν)
◮ u ∈ FSol(f , Λ, ν) =⇒ u ∧ c ∈ FSol(f ∧ c , Λ, ν), u ∨ c ∈ FSol(f ∨ c , Λ, ν)
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Geometric K -variation denoising problem with L1 fidelity

We also study the geometric K -variation L1 denoising problem (f = χE , u = χU )

(GP) min
U⊂Rn

PK (U) + Λ ν(U △ E )

and we let GSol(E , Λ, ν) be set of solutions to the geometric problem.

Basic properties of G-solutions

◮ U ∈ GSol(E , Λ, ν) =⇒ U + x ∈ GSol(E + x , Λ, νx ), νx (A) = ν(A − x)
◮ Uj ∈ GSol(Ej , Λ, ν), Ej → E in L1 , Uj → U in L1

loc =⇒ U ∈ GSol(E , Λ, ν)
◮ U ∈ GSol(E , Λ, ν) =⇒ Uc ∈ GSol(E c , Λ, ν)
◮ GSol(E , Λ, ν) closed under finite intersection and finite union
◮ GSol(E , Λ, ν) closed under count. decr. intersection and count. incr. union

Relation between F-solutions and G-solutions

◮ u ∈ FSol(f , Λ, ν) =⇒ {u > t} ∈ GSol({f > t}, Λ, ν) for all t ∈ R \ {0}
◮ {u > t} ∈ GSol({f > t}, Λ, ν) for a.e. t ∈ R =⇒ u ∈ FSol(f , Λ, ν)

Moreover, if |E | < ∞, then:
◮ U ∈ GSol(E , Λ, ν) =⇒ χU ∈ FSol(χE , Λ, ν)
◮ u ∈ FSol(χE , Λ, ν) =⇒ 0 ≤ u ≤ 1 a.e., {u > t} ∈ GSol(E , Λ, ν) for t ∈ (0 , 1)
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Existence for (GP) and basic properties

Existence for (GP) [Bessas-S.]

K /∈ L1 (Rn), K ∈ L1 (Rn \ Br ) for all r > 0 =⇒ GSol(E , Λ, ν) ∕= ∅ for |E | < ∞

Bounded geometric datum [Bessas-S.]

Assume K radial, 1 -decreasing and

Rn(1 ∧ |x |)K (x) dx < ∞.

(1) E ⊂ BR =⇒ U ⊂ BR for all U ∈ GSol(E , Λ, ν)

Moreover, if also K /∈ L1 , then

(2) E bounded convex =⇒ FSol(χE , Λ, ν) = {χUΛ} for a.e. Λ > 0 with UΛ ⊂ E

Idea of proof:

(1) ν((U ∩ BR) ∩ E ) ≤ ν(U ∩ E ) and PK (U ∩ BR) ≤ PK (U), since BR convex.

(2) Consider monotone maps Λ → inf / sup

u − χEL1 (ν) : u ∈ FSol(χE , Λ, ν)


.

Prove that FSol(χE , Λ, ν) = {uΛ} for Λ > 0 outside countable jump set.

Observe that u = χU for some U ⊂ E by basic properties.

Since FSol(χE , Λ, ν) is convex, U is unique.
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Maximal and minimal solutions of (GP)

Existence of max and min solutions of (GP) [Bessas-G.]

Assume K /∈ L1 (Rn), K ∈ L1 (Rn \ Br ) for all r > 0 . If |E | < ∞, then (GP) admits
a minimal and a maximal solution E−, E+ ∈ GSol(E , Λ, ν) w.r.t. inclusion.

Properties: E− ⊂ E+, (E c)− = (E+)c , (E c)+ = (E−)c , ν(E−) ≤ ν(E+) ≤ 2ν(E ).

Idea of proof: To construct E−, choose a minimizing sequence for

inf{ν(U) : U ∈ GSol(E , Λ, ν)} ∈ [0 , 2ν(E )]

and then use closure w.r.t. finite and countable decreasing intersection.
Argue analogously for constructing E+.

Comparison principle for (GP) [Bessas-G.]

Assume K /∈ L1 (Rn), K ∈ L1 (Rn \ Br ) for all r > 0 , K symmetric and K > 0 .
If PK (Ei) < ∞ and min{|Ei |, |E c

i |} < ∞ for i = 1 , 2 , then

E2 ⊂ E1 =⇒ (E2 )
− ⊂ (E1 )

− and (E2 )
+ ⊂ (E1 )

+

Proof is tricky! One compares U1 ∈ GSol(E1 , Λ, ν) with U2 ∈ GSol(E2 , Λ, ν).

Remark K > 0 can be weaken to get a comparison principle at small scales.
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High fidelity

When fidelity Λ > 0 is high, the solution u = u(f , Λ) is very close to the datum f .
Assume K radial+,


Rn(1 ∧ |x |)K (x) dx < ∞, K /∈ L1 , K 1 -decreasing and K > 0 .

High fidelity for C1 ,1 regular sets [Bessas-S.]

Let E be C1 ,1 regular open set with min{|E |, |E c |} < ∞. There is Λ̄ > 0 such that

GSol(E , Λ, ν) = {E} and GSol(E c , Λ, ν) = {E c} for all Λ > Λ̄.

Idea of proof: By C1 ,1 regularity and comparison, we reduce to E = BR(x) a ball.

In this case, GSol(BR(x), Λ, ν) = {Br (x)} by isoperimetric inequality for 0 ≤ r ≤ R .

To prove r = R , one exploits the monotonicity of PK (K is 1 -decreasing).

Arguing via level sets, one can extend the previous result to functions.

High fidelity for uniformly C1 ,1 regular functions [Bessas-S.]

Let f ∈ L1 have uniformly C1 ,1 regular superlevel sets. There is Λ̄ > 0 such that

FSol(f , Λ, ν) = {f } for all Λ > Λ̄.

uniformly C1 ,1 regular superlevels = inner/outer radius of {f > t} uniform in t ∈ R
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Low fidelity

When fidelity Λ > 0 is low, the solution u = u(f , Λ) is very close to black screen.

Assume K radial,

Rn(1 ∧ |x |)K (x) dx < ∞, K /∈ L1 , K 1 -decreasing and

K D-doubling: ∃ C > 0 s.t. |y | = 2 |x |, |x | ≤ 2D =⇒ K (x) ≤ C K (y)

Low fidelity [Bessas-S.]

For R < D/4 there is Λ̄ > 0 such that

f ∈ L1 with supp(f ) ⊂ BR =⇒ FSol(f , Λ, ν) = {0} for all Λ < Λ̄.

Idea of proof: First reduce to f ≥ 0 and so u ≥ 0 . By minimality

[u]K + Λ u − f L1 (BR , ν) ≤ Λ f L1 (BR ,ν).

The trick is to estimate [u]K ≳h u(·+ h)− uL1 = 2uL1 ≳ν uL1 (BR , ν) for
2R ≤ |h| ≤ D

2 . The first inequality follows from an L1 -estimate on translation of
BV K functions which, in turn, is a consequence of a pointwise Lusin-type estimate

|u(x)− u(y)| ≤ ωK , D(|x − y |)

DK u(x) + DK u(y)


,

DK u(x) = 1
2



Rn
|u(x)− u(z)|K (x − z) dz and ωK , D modulus of continuity
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The non-local Cheeger problem

Total variation denoising models can be naturally connected with Cheeger problem.

The Cheeger problem for the K -variation in an admissible Ω ⊂ Rn with |Ω| < ∞ is

hK , ν(Ω) = inf


PK (E )

ν(E )
: E ⊂ Ω , |E | ∈ (0 ,∞)


∈ [0 ,∞)

We call hK , ν(Ω) the Cheeger constant of Ω and any minimizer a Cheeger set of Ω .

Existence of Cheeger sets and basic properties [Bessas-S.]

Let K radial, K ∈ L1 (Rn \ Br ) ∀r > 0 , K /∈ L1 and q-decreasing with q < n + 1 .
Cheeger sets E exist (hence hK , ν(Ω) > 0 ) with

|E |
q
n −1 ≥ C iso

|Ω|,n,q,ν hK , ν(Ω).

Moreover, ∂E ∩ ∂Ω ∕= ∅ for ν = L n , Ω open and K n-decreasing+.

Idea of proof: exploit compactness in BV K , isoperimetric ineq. and monotonicity.

Further properties for ν = L n [Bessas-S.]

◮ calibrability: balls are self-Cheeger sets
◮ K -Faber-Krahn inequality: hK (Ω) ≥ hK (B|Ω|) where |B|Ω|| = |Ω|
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Relation between (GP) and Cheeger problem

Assume K radial,


Rn
(1 ∧ |x |)K (x) dx < ∞, K /∈ L1 (Rn), K q-decreasing with

q ∈ [1 , n + 1) and D-doubling with D = ∞.

Relation between (GP) and Cheeger problem [Bessas-S.]

Let E be a bounded convex set with non-empty interior.

(1) hK , ν(E ) = sup{Λ > 0 : ∅ ∈ GSol(E , Λ, ν)} ∈ (0 ,∞).

(2) Λ < hK , ν(E ) =⇒ GSol(E , Λ, ν) = {∅}.

(3) Λ = hK , ν(E ) =⇒ GSol(E , Λ, ν) = CK , ν(E ) ∪ {∅} and so

FSol(χE , hK , ν(E ), ν) =


u ∈ BV K (Rn; [0 , 1 ]) : {u > t} ∈ CK , ν(E ) ∪ {∅}


(4) Λ > hK , ν(E ) and E is calibrable =⇒ GSol(E , Λ, ν) = {E}.

For ν = L n and E = ball B , such result can be improved as

GSol(B , Λ,L n) =






{∅} for Λ < Λ0

{∅, B} for Λ = Λ0

{B} for Λ > Λ0

where Λ0 =
PK (B)

|B|
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THANK YOU FOR YOUR ATTENTION!

Slides available via giorgio.stefani.math@gmail.com or giorgiostefani.weebly.com.
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