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What are denoising models?

In image processing, denoising preserves the most significant features of an image
while removing the background noise.

Original Noisy image Denoised image

Source: Wikipedia

Total variation denoising models
Setting: screen ~ R", source image (corrupted) ~~ f, final image (denoised) ~ w.

. N
min [U]BV G = |U = f|p dx
ueBV(R") 19

where p € [1,00) and A > 0 is the fidelity.

Applications: gravitational-waves (2018) and black hole in Messier 87 galaxy (2019)
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Important models: ROF vs CE

. N
min [U]Bv-i-—/ |U—f|pdx
uEBV/(R") p Jrn

p = 2 ~ Rudin-Osher-Fatemi (ROF) model (1992)

» preserves sharp discontinuities (edges), removes fine scale details

» allows for discontinuities, disfavors large oscillations

» strictly convex, hence uniqueness of minimizer u = u(f, A)

» NOT contrast invariant: u solution for £, cu not solution for cf with ¢ > 0

p = 1 ~ Chan and Esedoglu (CE) model (2005)

» contrast invariant

» convex but NOT strictly, hence non-uniqueness of minimizers
» depends on the shape of the images

» level-set decoupling via coarea formula

[ulgy = /]R P({u>t})dt
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The importance of total variation: local vs non-local

Local BV

» quite efficient in reducing the noise and reconstructing the main features
» scarcely preserves the details and textures of the datum

Non-local BV

» good for digital images/filters
> weights the affinity between different parts/pixels in the image
» considers both geometric parts and textures

I I
Source: Dipierro-Valdinoci (2018)
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What is non-local variation?
Keep in mind: non-local = 'distant points count'

Non-local total variation with kernel K
o= [ [ 1060~ uly)| Klx - y) dxdy
n RH
where K > 0 is a kernel

Important examples

> K € L1(R") gives [u]gyx < ||K]||1||ull: Mazon-Solera-Toledo]
> K(x) = # gives the Gagliardo-Slobodeckij-Sobolev seminorm for p = 1,

‘ 1/p
Wsp(/ / |x— |n+5p dxdy> for p € [1,00)

[Bessas], [Ressas-S], [Novaga-Onoue]

Others: [Buades-Coll-Morel], [Kindermann-Osher-gones), [Gilboa-Osher], [Antil-Diiaz-ding-
Schikorra] using [Comi-S.] and more...
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Plan

STEP 0. We choose a kernel K > 0 and define the (non-local total) K-variation

‘ —/ Ju(x) — u(y) | K (x— y)dxdy|
Rn

STEP 1. We study the fundamental properties of the space

‘ BVK(R") = {ue L'(R") : [u]gyx < oo} ’

STEP 2. We use the theory of BVK functions to study the L*-denoising model

min N —fld
ueva(Rn)[U]BVK+ R"lu | dx

STEP 3. We study the associated non-local Cheeger problem
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The space of functions with finite K-variation
Let K > 0 be a kernel on R". We focus on non-integrable kernels K ¢ L1(R") only.

The non-local K-variation of u € LL (R") is

=5 [ [ 1ut) = w) K(x = y) dedy.
n Rn
50 BVK(R") = {u € L}(R") : [u]x < oo}. The K-perimeter is Px(E) = [x&]«.

Basic properties
e isometries: [ -]k is translation invariant, homogeneous and [c]x = 0
e min-max: [U/\ V]K + [U V V]K < [U]K + [V]K

o Fatou: ue — v in L (R") = [u]k < liminf[ue]x

e coarea formula: [ulx = / Pi({u > t})dt

.B\/CB\/K <maX{||U||L1,2 BV}/ 1/\|X| ( )
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Sequential compactness in Wk

To prove existence of minimizers u = u(f, A), we need compactness in BVK.
We work in the more general space WKP c LP with p € [1,400) and

s = (£ [ [ w0 —wt ey aeay)

For p = 1 we recover [u]x; = [u]gyx and WK1 = BVK.
Sequential compactness [Bessas-8], [Foghem Gounoue in PhD. thesis]
K¢Ll(R"), Kell(R"\B,)foralr>0

4

(un)n C WKP bounded = 3 subsequence (up,); Lf

i K
e-converging to u € WHP

ldea of proof: T,(u) = u*nis LP — LP locally compact for n € L? and

lu—= Ty (W) ller S K517 (]
for Nne = K§/HK5HL1 and Ks = K].Rn\B& Note that HK5”L1 —oo0asd— 0t. Ul
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Isoperimetric inequality
For v > 0, we let BY = B, with r, = (v/|B;])"/" so that |BY| = v.
Isoperimetric inequality [Bessas-S], [Cesaroni-Novagal], [De Luca-Novaga-Ponsiglione]
K radially symmetric decreasing = Px(E) > Px(B'E]), with |BIEl| = |E|
equality <= E is aball, if K radial* in a ngbh of the origin

Idea of proof: Apply Riesz rearrangement inequality to

K] Lo
Px(E) =/0 E1{K > t}] —/

RN
noticing that {K > t} = Bg(y) is a ball for some R(t) € [0, c]. O

1e(x) 1e(y) 1{K>t}(x —y)dxdydt
Rn

Open problem: find isoperimteric sets for K ¢ L1 NOT radially symmetric!

Corollary [Ressas-S)
K radially symmetric decreasing = [u]x > [u*]k
equality <= u> 0, {u > t}isabal, if K radial™ in a ngbh of the origin

where u* is the symmetric decreasing rearrangement of u (apply coarea formula).
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Monotonicity formula

Assume K is g-decreasing: |x| < |y| = K(x)|x]9 > K(y)|y|? for g > 0.
Fun fact: g-decreasing for ¢ > n+1 = BV functions are constant! [Brezis)

PK(I’E) > PK<RE)
rE[~% = |RE[>S

ldea of proof Observe that (for simplicity, K is symmetric)

K (AE) // (x —y)dxdy = )\2"// ))dx dy
AE J(AE)e c

for A > 0 by changing variables, then apply g-decreasing assumption. O

Monotonicity [Bessas-S]: 0 < r < R< +oco =

Isoperimetric inequality for small volumes [Bessas-8]

Pk(E) _ Pk(B)

Kradialandg<n+1:. |E|<L|B = - .
q EI <18l = 17r 2 5o

Gagliardo-Nirenberg-Sobolev for finite support [Bessas-S]

u € BVK with [supp(u)| < 00 = [lull paes < Cis2cpo [ulkc
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Intersection with convex sets

Assume K is radial, 1-decreasing and / (1A ]x])K(x)dx < oo.
]Rn

Intersection with convex sets [Bessas-S)
|E| <00 = Px(ENC) < Pk(E) for all C c R" convex
Idea of proof [Figalli-Fusco-Maggi-Millot-Morini]: After reducing to C = H half-space
and E bounded, for xop € OH and Bgr(xp) D E one can estimate
Px(E) — Pk(ENH) > Px(F; Br(x0)) — Px(H; Br(x0))
where F = E U H and

PK(F;A):</ / +/ / +/ / >K(x—y)dxdy
ENAJENA ENA JE<NAc ENAc JENA
is the K-perimeter of F relative to A. The conclusion follows from

Local minimality of half-spaces [Pagliari], [Cabreé]
H is a half-space, 0 € 9H = Pk (H;Bgr) < Px(E;Bg) if E\ Bk = H\ Bg

K-Archimedes: A C B with A convex and |B| < o0 = Pk (A) < Pk(B)
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Functional K-variation denoising problem with L* fidelity

Data: R" screen, f € LL, corrupted image and A > 0 fidelity.
We study the functional K-variation L* denoising problem

(FP) min [U]B\/K —|—A/ |U—f|dV
ueL, (R R"

where v e W(R") = {v =wZ": w € L=, infgo w > 0} an L>-weight measure.
Why L*°-weight measures? ~~ deep learning

» do not alter the LI nature of the approximation term

» more flexibility, adding a degree of freedom in the fidelity

» A > 0 keeps its role of global Lagrangian multiplier

» v secondary local fidelity parameter (emphasis on specific regions only)

Source: Sun-Parwani 12/21



Existence and basic properties for (FP)

Call F&ol(f, A, v) the set of solutions of the functional problem

vell (R")

(FP)  min [U]BVK+/\/ u— f|dv
R"

Existence for (FP) [Bessas-S]
K¢ LI(R"), KeLX(R"\ B,) forall r >0 = FSol(f,Av) # 0 for f € L1(R")

ldea of proof: Use sc of energy and compactness in BVX. O

Basic properties of F-solutions

» FSol(f,Av) C LL_ is convex and closed
> uj € FSol(F,Av), f — fin LY uj — uin Llloc
» FSol(f + ¢, A v) =FSol(f,Av) + ¢

» FSol(cf,Av) = cFSol(f, A v)

» ucFSol(f,Av) = ut e FSol(fT,Av), u= € FSol(f~,A,v)

» ueFSol(f,Av) = uAceFSol(FAc,Av), uVceFSol(fVcAv)

= u e FSol(f, A v)
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Geometric K-variation denoising problem with L? fidelity

We also study the geometric K-variation L? denoising problem (f = g, u = xu)

(GP)  min Px(U) + Av(U A E)
UCR"

and we let GSol(E, A, v) be set of solutions to the geometric problem.
Basic properties of G-solutions

» U e GSOl(E,Av) = U+ x € GSO(E + x,Avy), vx(A) = V(A — x)
» Uy e GSO(EjAv), Ef = Einl! U= UinLl, = U e GSol(E,Av)
» U € GSOl(E,A,v) = U° € GSOl(E€, A v)

» GSOl(E, A, v) closed under finite intersection and finite union

» GSol(E, A, v) closed under count. decr. intersection and count. incr. union

Relation between F-solutions and G-solutions

» ueFSol(f,Av) = {u>t}eGSl({f >t} Av)forallteR\ {0}
» {u>t} € GSol({f > t},Av) forae. t e R = u e FSol(f Av)
Moreover, if |E| < oo, then:
» U e GSol(E,Av) = xu € FSol(xe, A v)
» u € FSol(xe, Av) = 0<u<I1ae,{u>t}eGSol(EAv)forte(01)
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Existence for (GP) and basic properties

Existence for (GP) [Ressas-S)]
K¢ LI(R"), Ke LL(R"\ B,) forallr >0 = GSol(E,Av) # 0 for |E| < oo

Bounded geometric datum [Bessas-S]
Assume K radial, 1-decreasing and [p.(I A [x|) K(x) dx < co.
(1) EC B = U cC Bgforall Ue GSol(E,Av)
Moreover, if also K ¢ L, then
(2) E bounded convex = FSol(xe, A v) = {xu,} forae. A > 0 with Ux C E
ldea of proof:

(1) v((UNBR)NE) <v(UNE) and Px(UN Bg) < Px(U), since Bg convex.
(2) Consider monotone maps A — inf / sup{|lu — xelliz ) : u € FSol(xe, A v)}.
Prove that FSol(xg,A,v) = {ua} for A > 0 outside countable jump set.
Observe that u = xy for some U C E by basic properties.
Since FSol(xe, A, v) is convex, U is unique. O
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Maximal and minimal solutions of (GP)

Existence of max and min solutions of (GP) [Bessas-G]

Assume K ¢ L1(R"), K € LI(R"\ B,) for all r > 0. If |E| < oo, then (GP) admits
a minimal and a maximal solution E~,E* € GSol(E, A,v) wrt. inclusion.

Properties: E= C E*+, (E€)~ = (ET)<, (E)* = (E7)¢, v(E™) < v(E*+) < 2u(E).
ldea of proof: To construct E—, choose a minimizing sequence for
inf{v(U) : U € GSOl(E,A,v)} € [0,2v(E)]

and then use closure wrt. finite and countable decreasing intersection.
Argue analogously for constructing E*. O

Comparison principle for (GP) [Bessas-G ]

Assume K ¢ L1(R"), K € LI(R"\ B,) for all r > 0, K symmetric and K > 0.
If Px(E;) < oo and min{|E;|,|EF|} < oo for i = 1,2, then

E>-CE — (Eg)_ - (E])_ and (E2)+ C (E1)+
Proof is tricky! One compares U; € GSol(E;,A,v) with Uz € GSol(Ez, A, v).

Remark K > 0 can be weaken to get a comparison principle at small scales.
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High fidelity

When fidelity A > 0 is high, the solution u = u(f,A) is very close to the datum f.

Assume K radial™, [5.(1 A|x]) K(x)dx < oo, K ¢ L, K 1-decreasingand K > 0.

High fidelity for €21 regular sets [Ressas-S]

Let E be C1! regular open set with min{|E|,|E€|} < oo. There is A > 0 such that
GSO(E,Av)={E} and GSol(E¢ Av)={E} forallA>A

ldea of proof: By C11 regularity and comparison, we reduce to E = Bg(x) a ball.

In this case, GSol(Bgr(x),A,v) = {B,(x)} by isoperimetric inequality for 0 < r < R.

To prove r = R, one exploits the monotonicity of Pk (K is 1-decreasing). O

Arguing via level sets, one can extend the previous result to functions.

High fidelity for uniformly C1Z regular functions [Bessas-S]

Let f € L! have uniformly C1? regular superlevel sets. There is A > 0 such that

FSol(f, A v) = {f} forallA>A

uniformly C11 regular superlevels = inner/outer radius of {f > t} uniformint € R
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Low fidelity

When fidelity A > 0 is low, the solution u = u(f, A) is very close to black screen.
Assume K radial, [5.(1 A [x]) K(x) dx < oo, K ¢ L1, K 1-decreasing and

K D-doubling: 3 C > 0 st.|y| = 2|x|, |x| £ 2D = K(x) < CK(y)

Low fidelity [Bessas-S]
For R < D/4 thereis A > 0 such that

f € L* with supp(f) € Bk = FSol(f,A,v) = {0} for all A < A,
ldea of proof: First reduce to f > 0 and so u > 0. By minimality
[ulk + Allu = Flliage,w) < AllfllL2(Bra)-
The trick is to estimate [u]x 2 ||u(- 4+ h) — ull = 2||ullr 20 (|ull2(Be,0) fOr

2R < |h| < 2. The first inequality follows from an L!-estimate on translation of
BV¥ functions which, in turn, is a consequence of a pointwise Lusin-type estimate

u(x) — u(y)| < wk.p(Ix = y|) (Dku(x) + Dku(y)),

Dyu(x / lu( Z)|K(x —z)dz and wk p modulus of continuity
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The non-local Cheeger problem

Total variation denoising models can be naturally connected with Cheeger problem.
The Cheeger problem for the K-variation in an admissible 2 € R” with [22] < oo is

Pk (E)
v(E)

We call hy ,, (£2) the Cheeger constant of 2 and any minimizer a Cheeger set of 2.

hK,l,(Q):inf{ cEC E|€(0,oo)} € [0,00)

Existence of Cheeger sets and basic properties [Bessas-S]

Let K radial, K € L1(R"\ B,) Vr > 0, K ¢ L! and g-decreasing with g < n+ 1.
Cheeger sets E exist (hence hk, ,(£2) > 0) with

‘E|%71 > C|ij§2‘|)_n,q,u hK.V(Q)‘
Moreover, 9E N 92 # 0 for v = £, 2 open and K n-decreasing™.

ldea of proof: exploit compactness in BVK, isoperimetric ineq. and monotonicity. 0
Further properties for v = .£" [Bessas-S]

» calibrability: balls are self-Cheeger sets

» K-Faber-Krahn inequality: hx (2) > hx(B1?!) where |BI?l| = ||
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Relation between (GP) and Cheeger problem

Assume K radial, / (1A |x])K(x)dx < oo, K ¢ L1(R™), K g-decreasing with
ge[l,n+1)and gfdoubling with D = oo,
Relation between (GP) and Cheeger problem [Bessas-S]
Let E be a bounded convex set with non-empty interior.
(1) hk o (E) =sup{A > 0: 0 € GSol(E,A,v)} € (0,00).
(2) A< hk ,(E) = GSOl(E,A\v) = {0}.
(3) A= hk ,(E) = GSOl(E,Av) =Cxk ,(E)U{B} and s0
FSol(xe, kv (E),v) = {u € BVK(R";[0,1]) : {u > t} € Ck,,(E) U{0}}
(4) A> hk ,(E) and E is calibrable = GSol(E,A,v) = {E}.
For v = 2" and E = ball B, such result can be improved as
{0} for A< A

GSol(BAZL") = q {0.B} forA=Ag  where Ay = PTI;B)
{B} for A > Ag
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THANK YOU FOR YOUR ATTENTION!

Slides available via giorgio.stefanimath@gmail.com or giorgiostefaniweebly.com.
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