Non-local BV functions and a denoising model with L^{1} fidelity

Giorgio Stefani

(in collaboration with Konstantinos Bessas)
Shape Optimization, Geometric Inequalities, and Related Topics
January 31, 2023
Napoli

Established by the European Commission

What are denoising models?

In image processing, denoising preserves the most significant features of an image while removing the background noise.

Total variation denoising models

Setting: screen $\rightsquigarrow \mathbb{R}^{n}$, source image (corrupted) $\rightsquigarrow f$, final image (denoised) $\rightsquigarrow u$.

$$
\min _{u \in B V\left(\mathbb{R}^{n}\right)}[u]_{B V}+\frac{\Lambda}{p} \int_{\mathbb{R}^{n}}|u-f|^{p} d x
$$

where $p \in[1, \infty)$ and $\Lambda>0$ is the fidelity.
Applications: gravitational-waves (20 18) and black hole in Messier 87 galaxy (20 19)

Important models: ROF vs CE

$$
\min _{u \in B V\left(\mathbb{R}^{n}\right)}[u]_{B V}+\frac{\Lambda}{p} \int_{\mathbb{R}^{n}}|u-f|^{p} d x
$$

$p=2 \rightsquigarrow$ Rudin-Osher-Fatemi (ROF) model (1992)

- preserves sharp discontinuities (edges), removes fine scale details
- allows for discontinuities, disfavors large oscillations
- strictly convex, hence uniqueness of minimizer $u=u(f, \Lambda)$
- NOT contrast invariant: u solution for $f, c u$ not solution for $c f$ with $c>0$

```
p=1}\rightsquigarrow\mathrm{ Chan and Esedoğlu (CE) model (2005)
```

- contrast invariant
- convex but NOT strictly, hence non-uniqueness of minimizers
- depends on the shape of the images
- level-set decoupling via coarea formula

$$
[u]_{B V}=\int_{\mathbb{R}} P(\{u>t\}) d t
$$

The importance of total variation: local vs non-local

Local BV

- quite efficient in reducing the noise and reconstructing the main features
- scarcely preserves the details and textures of the datum

Non-local BV

- good for digital images/filters
- weights the affinity between different parts/pixels in the image
- considers both geometric parts and textures

What is non-local variation?

Keep in mind: non-local = 'distant points count'
Non-local total variation with kernel K

$$
[u]_{B V^{\kappa}}=\frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|u(x)-u(y)| K(x-y) d x d y
$$

where $K \geq 0$ is a kernel
Important examples:

- $K \in L^{1}\left(\mathbb{R}^{n}\right)$ gives $[u]_{B V^{K}} \leq\|K\|_{L^{1}}\|u\|_{L^{1}}$ [Mazón-Solera-Toledo]
- $K(x)=\frac{1}{|x|^{n+s}}$ gives the Gagliardo-Slobodeckij-Sobolev seminorm for $p=1$,

$$
[u]_{W^{s, p}}=\left(\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y\right)^{1 / p} \quad \text { for } p \in[1, \infty)
$$

[Bessas], [Bessas-S.], [Novaga-Onoue]
Others: [Buades-Coll-Morel], [Kindermann-Osher-Jones], [Gilboa-Osher], [Antil-Diíaz-JingSchikorra] using [Comi-S.] and more...

Plan

STEP 0 . We choose a kernel $K \geq 0$ and define the (non-local total) K-variation

$$
[u]_{B V^{K}}=\frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|u(x)-u(y)| K(x-y) d x d y .
$$

STEP I. We study the fundamental properties of the space

$$
B V^{K}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{1}\left(\mathbb{R}^{n}\right):[u]_{B V^{K}}<\infty\right\} .
$$

STEP 2. We use the theory of $B V^{K}$ functions to study the L^{1}-denoising model

$$
\min _{u \in B V^{\kappa}\left(\mathbb{R}^{n}\right)}[u]_{B V^{K}}+\Lambda \int_{\mathbb{R}^{n}}|u-f| d x
$$

STEP 3. We study the associated non-local Cheeger problem.

The space of functions with finite K-variation

Let $K \geq 0$ be a kernel on \mathbb{R}^{n}. We focus on non-integrable kernels $K \notin L^{1}\left(\mathbb{R}^{n}\right)$ only.
The non-local K-variation of $u \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ is

$$
[u]_{K}=\frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|u(x)-u(y)| K(x-y) d x d y
$$

so $B V^{K}\left(\mathbb{R}^{n}\right)=\left\{u \in L^{1}\left(\mathbb{R}^{n}\right):[u]_{K}<\infty\right\}$. The K-perimeter is $P_{K}(E)=\left[\chi_{E}\right]_{K}$.

Basic properties

- isometries: $[\cdot]_{K}$ is translation invariant, homogeneous and $[c]_{K}=0$
- min-max: $[u \wedge v]_{K}+[u \vee v]_{K} \leq[u]_{K}+[v]_{K}$
- Fatou: $u_{k} \rightarrow u$ in $L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right) \Longrightarrow[u]_{K} \leq \liminf _{k}\left[u_{k}\right]_{K}$
- coarea formula: $[u]_{K}=\int_{\mathbb{R}} P_{K}(\{u>t\}) d t$

Sequential compactness in $W^{K, p}$

To prove existence of minimizers $u=u(f, \Lambda)$, we need compactness in $B V^{k}$. We work in the more general space $W^{K, p} \subset L^{p}$ with $p \in[1,+\infty)$ and

$$
[u]_{K, p}=\left(\frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|u(x)-u(y)|^{p} K(x-y) d x d y\right)^{1 / p}
$$

For $p=1$ we recover $[u]_{K, 1}=[u]_{B V^{K}}$ and $W^{K, 1}=B V^{K}$.
Sequential compactness [Bessas-S.], [Foghem Gounoue in Ph.D. thesis]
$K \notin L^{1}\left(\mathbb{R}^{n}\right), \quad K \in L^{1}\left(\mathbb{R}^{n} \backslash B_{r}\right)$ for all $r>0$

\Downarrow

$\left(u_{h}\right)_{h} \subset W^{K, p}$ bounded $\Longrightarrow \exists$ subsequence $\left(u_{h_{j}}\right)_{j} L_{l o c}^{p}$-converging to $u \in W^{K, p}$ Idea of proof: $T_{\eta}(u)=u * \eta$ is $L^{p} \rightarrow L^{p}$ locally compact for $\eta \in L^{1}$ and

$$
\left\|u-T_{\eta_{\delta}}(u)\right\|_{L^{p}} \lesssim\left\|K_{\delta}\right\|^{-1 / p}[u]_{K, p}
$$

for $\eta_{\delta}=K_{\delta} /\left\|K_{\delta}\right\|_{L^{1}}$ and $K_{\delta}=K \mathbf{1}_{\mathbb{R}^{n} \backslash B_{\delta}}$. Note that $\left\|K_{\delta}\right\|_{L^{1}} \rightarrow \infty$ as $\delta \rightarrow 0^{+}$.

Isoperimetric inequality

$$
\text { For } v>0 \text {, we let } B^{v}=B_{r_{v}} \text { with } r_{v}=\left(v /\left|B_{1}\right|\right)^{1 / n} \text {, so that }\left|B^{v}\right|=v \text {. }
$$

Isoperimetric inequality [Bessas-S.], [Cesaroni-Novaga], [De Luca-Novaga-Ponsiglione]
K radially symmetric decreasing $\Longrightarrow P_{K}(E) \geq P_{K}\left(B^{|E|}\right)$, with $\left|B^{|E|}\right|=|E|$
equality $\Longleftrightarrow E$ is a ball, if K radial ${ }^{+}$in a ngbh of the origin
Idea of proof: Apply Riesz rearrangement inequality to

$$
P_{K}(E)=\int_{0}^{\|K\|_{L \infty}}|E||\{K>t\}|-\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \mathbf{1}_{E}(x) \mathbf{1}_{E}(y) \mathbf{1}_{\{K>t\}}(x-y) d x d y d t
$$

noticing that $\{K>t\}=B_{R(t)}$ is a ball for some $R(t) \in[0, \infty]$.
Open problem: find isoperimteric sets for $K \notin L^{1}$ NOT radially symmetric!

Corollary [Bessas-S.]

K radially symmetric decreasing $\Longrightarrow[u]_{K} \geq\left[u^{\star}\right]_{K}$
equality $\Longleftrightarrow u \geq 0,\{u>t\}$ is a ball, if K radial ${ }^{+}$in a ngbh of the origin where u^{\star} is the symmetric decreasing rearrangement of u (apply coarea formula).

Monotonicity formula

Assume K is q-decreasing: $|x| \leq|y| \Longrightarrow K(x)|x|^{q} \geq K(y)|y|^{q}$ for $q \geq 0$.
Fun fact: q-decreasing for $q \geq n+1 \Longrightarrow B V^{K}$ functions are constant! [Brezis]

$$
\text { Monotonicity [Bessas-S.]: } 0<r \leq R<+\infty \Longrightarrow \frac{P_{K}(r E)}{|r E|^{2-\frac{q}{n}}} \geq \frac{P_{K}(R E)}{|R E|^{2-\frac{q}{n}}}
$$

Idea of proof: Observe that (for simplicity, K is symmetric)

$$
P_{K}(\lambda E)=\int_{\lambda E} \int_{(\lambda E)^{c}} K(x-y) d x d y=\lambda^{2 n} \int_{E} \int_{E^{c}} K(\lambda(x-y)) d x d y
$$

for $\lambda>0$ by changing variables, then apply q-decreasing assumption.
Isoperimetric inequality for small volumes [Bessas-S.]

$$
K \text { radial and } q<n+1: \quad|E| \leq|B| \Longrightarrow \frac{P_{K}(E)}{|E|^{2-\frac{q}{n}}} \geq \frac{P_{K}(B)}{|B|^{2-\frac{q}{n}}}
$$

Gagliardo-Nirenberg-Sobolev for finite support [Bessas-S.]

$$
u \in B V^{K} \text { with }|\operatorname{supp}(u)|<\infty \Longrightarrow\|u\|_{L^{\frac{n}{2 n-q}, 1}} \leq C_{n, q,|\operatorname{supp}(u)|}^{i s o}[u]_{K} .
$$

Intersection with convex sets

Assume K is radial, 1 -decreasing and $\int_{\mathbb{R}^{n}}(1 \wedge|x|) K(x) d x<\infty$.

Intersection with convex sets [Bessas-S.]

$$
|E|<\infty \Longrightarrow P_{K}(E \cap C) \leq P_{K}(E) \text { for all } C \subset \mathbb{R}^{n} \text { convex }
$$

Idea of proof [Figalli-Fusco-Maggi-Millot-Morini]: After reducing to $C=H$ half-space and E bounded, for $x_{0} \in \partial H$ and $B_{R}\left(x_{0}\right) \supset E$ one can estimate

$$
P_{K}(E)-P_{K}(E \cap H) \geq P_{K}\left(F ; B_{R}\left(x_{0}\right)\right)-P_{K}\left(H ; B_{R}\left(x_{0}\right)\right)
$$

where $F=E \cup H$ and

$$
P_{K}(F ; A)=\left(\int_{E \cap A} \int_{E^{c} \cap A}+\int_{E \cap A} \int_{E^{c} \cap A^{c}}+\int_{E \cap A^{c}} \int_{E^{c} \cap A}\right) K(x-y) d x d y
$$

is the K-perimeter of F relative to A. The conclusion follows from
Local minimality of half-spaces [Pagliari], [Cabré]
H is a half-space, $0 \in \partial H \Longrightarrow P_{K}\left(H ; B_{R}\right) \leq P_{K}\left(E ; B_{R}\right)$ if $E \backslash B_{R}=H \backslash B_{R}$
K-Archimedes: $A \subset B$ with A convex and $|B|<+\infty \Longrightarrow P_{K}(A) \leq P_{K}(B)$

Functional K-variation denoising problem with L^{1} fidelity
Data: \mathbb{R}^{n} screen, $f \in L_{l o c}^{1}$ corrupted image and $\Lambda>0$ fidelity.
We study the functional K-variation L^{1} denoising problem
(FP) $\min _{u \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right)}[u]_{B V K}+\Lambda \int_{\mathbb{R}^{n}}|u-f| d \nu$
where $\nu \in \mathcal{W}\left(\mathbb{R}^{n}\right)=\left\{\nu=w \mathscr{L}^{n}: w \in L^{\infty}\right.$, inf $\left.\mathbb{R}_{\mathbb{R}^{n}} w>0\right\}$ an L^{∞}-weight measure.
Why L^{∞}-weight measures?

- do not alter the L^{1} nature of the approximation term
- more flexibility, adding a degree of freedom in the fidelity
- $\Lambda>0$ keeps its role of global Lagrangian multiplier
- ν secondary local fidelity parameter (emphasis on specific regions only)

Existence and basic properties for (FP)

Call FSol (f, Λ, ν) the set of solutions of the functional problem

$$
\text { (FP) } \min _{u \in L_{b c}^{1}\left(\mathbb{R}^{n}\right)}[u]_{B V^{K}}+\Lambda \int_{\mathbb{R}^{n}}|u-f| d \nu
$$

Existence for (FP) [Bessas-S.]

$K \notin L^{1}\left(\mathbb{R}^{n}\right), K \in L^{1}\left(\mathbb{R}^{n} \backslash B_{r}\right)$ for all $r>0 \Longrightarrow \operatorname{FSol}(f, \Lambda, \nu) \neq \emptyset$ for $f \in L^{1}\left(\mathbb{R}^{n}\right)$ Idea of proof: Use Isc of energy and compactness in $B V^{K}$.

Basic properties of F-solutions

- $\operatorname{FSol}(f, \Lambda, \nu) \subset L_{\text {loc }}^{1}$ is convex and closed
- $u_{j} \in \operatorname{FSol}\left(f_{j}, \Lambda, \nu\right), f_{j} \rightarrow f$ in $L^{1}, u_{j} \rightarrow u$ in $L_{\text {loc }}^{1} \Longrightarrow u \in \operatorname{FSol}(f, \Lambda, \nu)$
- FSol $(f+c, \Lambda, \nu)=\operatorname{FSol}(f, \Lambda, \nu)+c$
- FSol $(c f, \Lambda, \nu)=c \operatorname{FSOl}(f, \Lambda, \nu)$
- $u \in \operatorname{FSol}(f, \Lambda, \nu) \Longrightarrow u^{+} \in \operatorname{FSol}\left(f^{+}, \Lambda, \nu\right), u^{-} \in \operatorname{FSol}\left(f^{-}, \Lambda, \nu\right)$
$\bullet u \in \operatorname{FSol}(f, \Lambda, \nu) \Longrightarrow u \wedge c \in \operatorname{FSol}(f \wedge c, \Lambda, \nu), u \vee c \in \operatorname{FSol}(f \vee c, \Lambda, \nu)$

Geometric K-variation denoising problem with L^{1} fidelity

 We also study the geometric K-variation L^{1} denoising problem ($f=\chi_{E}, u=\chi_{U}$)$$
\text { (GP) } \min _{U \subset \mathbb{R}^{n}} P_{K}(U)+\Lambda \nu(U \triangle E)
$$

and we let $\operatorname{GSol}(E, \Lambda, \nu)$ be set of solutions to the geometric problem.

Basic properties of G-solutions

- $U \in \operatorname{GSol}(E, \Lambda, \nu) \Longrightarrow U+x \in \operatorname{GSol}\left(E+x, \Lambda, \nu_{x}\right), \nu_{x}(A)=\nu(A-x)$
- $U_{j} \in \operatorname{GSol}\left(E_{j}, \Lambda, \nu\right), E_{j} \rightarrow E$ in $L^{1}, U_{j} \rightarrow U$ in $L_{\text {loc }}^{1} \Longrightarrow U \in \operatorname{GSol}(E, \Lambda, \nu)$
- $U \in \operatorname{GSol}(E, \Lambda, \nu) \Longrightarrow U^{c} \in \operatorname{GSol}\left(E^{c}, \Lambda, \nu\right)$
- $\operatorname{GSol}(E, \Lambda, \nu)$ closed under finite intersection and finite union
- GSol($E, \Lambda, \nu)$ closed under count. decr. intersection and count. incr. union

Relation between F-solutions and G-solutions

$-u \in \operatorname{FSol}(f, \Lambda, \nu) \Longrightarrow\{u>t\} \in \operatorname{GSol}(\{f>t\}, \Lambda, \nu)$ for all $t \in \mathbb{R} \backslash\{0\}$

- $\{u>t\} \in \operatorname{GSol}(\{f>t\}, \Lambda, \nu)$ for a.e. $t \in \mathbb{R} \Longrightarrow u \in \operatorname{FSol}(f, \Lambda, \nu)$ Moreover, if $|E|<\infty$, then:
- $U \in \operatorname{GSol}(E, \Lambda, \nu) \Longrightarrow \chi_{U} \in \operatorname{FSOl}\left(\chi_{E}, \Lambda, \nu\right)$
- $u \in \operatorname{FSol}\left(\chi_{E}, \Lambda, \nu\right) \Longrightarrow 0 \leq u \leq 1$ a.e., $\{u>t\} \in \operatorname{GSol}(E, \Lambda, \nu)$ for $t \in(0,1)$

Existence for (GP) and basic properties

Existence for (GP) [Bessas-S.]

$K \notin L^{1}\left(\mathbb{R}^{n}\right), K \in L^{1}\left(\mathbb{R}^{n} \backslash B_{r}\right)$ for all $r>0 \Longrightarrow \operatorname{GSol}(E, \Lambda, \nu) \neq \emptyset$ for $|E|<\infty$

Bounded geometric datum [Bessas-S.]

Assume K radial, 1 -decreasing and $\int_{\mathbb{R}^{n}}(1 \wedge|x|) K(x) d x<\infty$.
(1) $E \subset B_{R} \Longrightarrow U \subset B_{R}$ for all $U \in \operatorname{GSol}(E, \Lambda, \nu)$

Moreover, if also $K \notin L^{1}$, then
(2) E bounded convex $\Longrightarrow \operatorname{FSol}\left(\chi_{E}, \Lambda, \nu\right)=\left\{\chi U_{\Lambda}\right\}$ for a.e. $\Lambda>0$ with $U_{\Lambda} \subset E$ Idea of proof:
(1) $\nu\left(\left(U \cap B_{R}\right) \cap E\right) \leq \nu(U \cap E)$ and $P_{K}\left(U \cap B_{R}\right) \leq P_{K}(U)$, since B_{R} convex.
(2) Consider monotone maps $\Lambda \mapsto \inf / \sup \left\{\left\|u-\chi_{E}\right\|_{L^{1}(\nu)}: u \in \operatorname{FSol}\left(\chi_{E}, \Lambda, \nu\right)\right\}$. Prove that $\operatorname{FSol}\left(\chi_{E}, \Lambda, \nu\right)=\left\{u_{\Lambda}\right\}$ for $\Lambda>0$ outside countable jump set.
Observe that $u=\chi_{u}$ for some $U \subset E$ by basic properties.
Since $\operatorname{FSol}\left(\chi_{E}, \Lambda, \nu\right)$ is convex, U is unique.

Maximal and minimal solutions of (GP)
Existence of max and min solutions of (GP) [Bessas-G.]
Assume $K \notin L^{1}\left(\mathbb{R}^{n}\right), K \in L^{1}\left(\mathbb{R}^{n} \backslash B_{r}\right)$ for all $r>0$. If $|E|<\infty$, then (GP) admits a minimal and a maximal solution $E^{-}, E^{+} \in \operatorname{GSol}(E, \Lambda, \nu)$ w.r.t. inclusion.

Properties: $E^{-} \subset E^{+},\left(E^{c}\right)^{-}=\left(E^{+}\right)^{c},\left(E^{c}\right)^{+}=\left(E^{-}\right)^{c}, \nu\left(E^{-}\right) \leq \nu\left(E^{+}\right) \leq 2 \nu(E)$.
Idea of proof: To construct E^{-}, choose a minimizing sequence for

$$
\inf \{\nu(U): U \in \operatorname{GSol}(E, \Lambda, \nu)\} \in[0,2 \nu(E)]
$$

and then use closure w.r.t. finite and countable decreasing intersection.
Argue analogously for constructing E^{+}.
Comparison principle for (GP) [Bessas-G.]
Assume $K \notin L^{1}\left(\mathbb{R}^{n}\right), K \in L^{1}\left(\mathbb{R}^{n} \backslash B_{r}\right)$ for all $r>0, K$ symmetric and $K>0$. If $P_{K}\left(E_{i}\right)<\infty$ and $\min \left\{\left|E_{i}\right|,\left|E_{i}^{c}\right|\right\}<\infty$ for $i=1,2$, then

$$
E_{2} \subset E_{1} \Longrightarrow\left(E_{2}\right)^{-} \subset\left(E_{1}\right)^{-} \text {and }\left(E_{2}\right)^{+} \subset\left(E_{1}\right)^{+}
$$

Proof is tricky! One compares $U_{1} \in \operatorname{GSol}\left(E_{1}, \Lambda, \nu\right)$ with $U_{2} \in \operatorname{GSol}\left(E_{2}, \Lambda, \nu\right)$.
Remark $K>0$ can be weaken to get a comparison principle at small scales.

High fidelity

When fidelity $\Lambda>0$ is high, the solution $u=u(f, \Lambda)$ is very close to the datum f.
Assume K radial ${ }^{+}, \int_{\mathbb{R}^{n}}(1 \wedge|x|) K(x) d x<\infty, K \notin L^{1}, K 1$-decreasing and $K>0$.
High fidelity for $C^{1,1}$ regular sets [Bessas-S.]
Let E be $C^{1,1}$ regular open set with $\min \left\{|E|,\left|E^{c}\right|\right\}<\infty$. There is $\bar{\Lambda}>0$ such that

$$
\operatorname{GSol}(E, \Lambda, \nu)=\{E\} \quad \text { and } \quad \operatorname{GSol}\left(E^{c}, \Lambda, \nu\right)=\left\{E^{c}\right\} \quad \text { for all } \Lambda>\bar{\Lambda}
$$

Idea of proof: By $C^{1,1}$ regularity and comparison, we reduce to $E=B_{R}(x)$ a ball. In this case, $\operatorname{GSol}\left(B_{R}(x), \Lambda, \nu\right)=\left\{B_{r}(x)\right\}$ by isoperimetric inequality for $0 \leq r \leq R$. To prove $r=R$, one exploits the monotonicity of P_{K} (K is 1 -decreasing). Arguing via level sets, one can extend the previous result to functions.

High fidelity for uniformly $C^{1,1}$ regular functions [Bessas- δ.]
Let $f \in L^{1}$ have uniformly $C^{1,1}$ regular superlevel sets. There is $\bar{\Lambda}>0$ such that

$$
\operatorname{FSol}(f, \Lambda, \nu)=\{f\} \quad \text { for all } \Lambda>\bar{\Lambda}
$$

uniformly $C^{1,1}$ regular superlevels $=$ inner/outer radius of $\{f>t\}$ uniform in $t \in \mathbb{R}$

Low fidelity

When fidelity $\Lambda>0$ is low, the solution $u=u(f, \Lambda)$ is very close to black screen.
Assume K radial, $\int_{\mathbb{R}^{n}}(1 \wedge|x|) K(x) d x<\infty, K \notin L^{1}, K 1$-decreasing and

$$
K \text {-doubling: } \exists C>0 \text { s.t. }|y|=2|x|,|x| \leq 2 D \Longrightarrow K(x) \leq C K(y)
$$

Low fidelity [Bessas- δ.]

For $R<D / 4$ there is $\bar{\Lambda}>0$ such that

$$
f \in L^{1} \text { with } \operatorname{supp}(f) \subset B_{R} \Longrightarrow \operatorname{FSol}(f, \Lambda, \nu)=\{0\} \text { for all } \Lambda<\bar{\Lambda}
$$

Idea of proof: First reduce to $f \geq 0$ and so $u \geq 0$. By minimality

$$
[u]_{K}+\Lambda\|u-f\|_{L^{1}\left(B_{R}, \nu\right)} \leq \Lambda\|f\|_{L^{1}\left(B_{R}, \nu\right)} .
$$

The trick is to estimate $[u]_{K} \gtrsim h\|u(\cdot+h)-u\|_{L^{1}}=2\|u\|_{L^{1}} \gtrsim \nu\|u\|_{L^{1}\left(B_{R}, \nu\right)}$ for $2 R \leq|h| \leq \frac{D}{2}$. The first inequality follows from an L^{1}-estimate on translation of $B V^{\bar{K}}$ functions which, in turn, is a consequence of a pointwise Lusin-type estimate

$$
|u(x)-u(y)| \leq \omega_{K, D}(|x-y|)\left(\mathbf{D}_{K} u(x)+\mathbf{D}_{K} u(y)\right)
$$

$\mathbf{D}_{K} u(x)=\frac{1}{2} \int_{\mathbb{R}^{n}}|u(x)-u(z)| K(x-z) d z \quad$ and $\quad \omega_{K, D}$ modulus of continuity

The non-local Cheeger problem

Total variation denoising models can be naturally connected with Cheeger problem.
The Cheeger problem for the K-variation in an admissible $\Omega \subset \mathbb{R}^{n}$ with $|\Omega|<\infty$ is

$$
h_{K, \nu}(\Omega)=\inf \left\{\frac{P_{K}(E)}{\nu(E)}: E \subset \Omega,|E| \in(0, \infty)\right\} \in[0, \infty)
$$

We call $h_{K, \nu}(\Omega)$ the Cheeger constant of Ω and any minimizer a Cheeger set of Ω.

Existence of Cheeger sets and basic properties [Bessas- δ.]

Let K radial, $K \in L^{1}\left(\mathbb{R}^{n} \backslash B_{r}\right) \forall r>0, K \notin L^{1}$ and q-decreasing with $q<n+1$. Cheeger sets E exist (hence $h_{K, \nu}(\Omega)>0$) with

$$
|E|^{\frac{q}{n}-1} \geq C_{|\Omega|, n, q, \nu}^{i s o} h_{K, \nu}(\Omega) .
$$

Moreover, $\partial E \cap \partial \Omega \neq \emptyset$ for $\nu=\mathscr{L}^{n}, \Omega$ open and $K n$-decreasing ${ }^{+}$. Idea of proof: exploit compactness in $B V^{K}$, isoperimetric ineq. and monotonicity.
Further properties for $\nu=\mathscr{L}^{n}$ [Bessas- δ]

- calibrability: balls are self-Cheeger sets
- K-Faber-Krahn inequality: $h_{K}(\Omega) \geq h_{K}\left(B^{|\Omega|}\right)$ where $\left|B^{|\Omega|}\right|=|\Omega|$

Relation between (GP) and Cheeger problem

Assume K radial, $\int_{\mathbb{R}^{n}}(1 \wedge|x|) K(x) d x<\infty, K \notin \iota^{1}\left(\mathbb{R}^{n}\right), K q$-decreasing with $q \in[1, n+1)$ and D-doubling with $D=\infty$.

Relation between (GP) and Cheeger problem [Bessas-S.]

Let E be a bounded convex set with non-empty interior.
(1) $h_{K, \nu}(E)=\sup \{\Lambda>0: \emptyset \in \operatorname{GSol}(E, \Lambda, \nu)\} \in(0, \infty)$.
(2) $\Lambda<h_{K, \nu}(E) \Longrightarrow \operatorname{GSol}(E, \Lambda, \nu)=\{\emptyset\}$.
(3) $\Lambda=h_{K, \nu}(E) \Longrightarrow \operatorname{GSol}(E, \Lambda, \nu)=\mathcal{C}_{K, \nu}(E) \cup\{\emptyset\}$ and so
$\operatorname{FSol}\left(\chi_{E}, h_{K, \nu}(E), \nu\right)=\left\{u \in B V^{K}\left(\mathbb{R}^{n} ;[0,1]\right):\{u>t\} \in \mathcal{C}_{K, \nu}(E) \cup\{\emptyset\}\right\}$
(4) $\Lambda>h_{K, \nu}(E)$ and E is calibrable $\Longrightarrow \operatorname{GSol}(E, \Lambda, \nu)=\{E\}$.

For $\nu=\mathscr{L}^{n}$ and $E=$ ball B, such result can be improved as

$$
\operatorname{GSol}\left(B, \Lambda, \mathscr{L}^{n}\right)=\left\{\begin{array}{cc}
\{\emptyset\} & \text { for } \Lambda<\Lambda_{0} \\
\{\emptyset, B\} & \text { for } \Lambda=\Lambda_{0} \\
\{B\} & \text { for } \Lambda>\Lambda_{0}
\end{array} \quad \text { where } \Lambda_{0}=\frac{P_{K}(B)}{|B|}\right.
$$

THANK YOU FOR YOUR ATTENTION!

Slides available via giorgio.stefani.math@gmail.com or giorgiostefani.weebly.com.

- References -
- K. Bessas and G. Stefani, Non-local BV functions and a denoising model with L^{1} fidelity, available at arXiv:22 10.11958 v2
- V. Franceschi, A. Pinamonti, G. Saracco and G. Stefani, The Cheeger problem in abstract measure spaces, available at arXiv:2207.00482.

