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Warm up: the Cheeger problem in Rn

Let Ω ⊂ Rn be a non-empty bounded open set with Lipschitz boundary.

The Cheeger problem is the isoperimetric-type optimization problem

h(Ω) = inf
!
P (E)

|E| : E ⊂ Ω, |E| > 0

"
∈ [0,+∞).

The number h(Ω) is the Cheeger constant and any minimizer is a Cheeger set of Ω.

This problem was introduced by Maz'ya (1962) and Cheeger (1969) and links to:
• lower bounds for the first eigenvalue of the Dirichlet p-Laplacian operator
• the creep torsion problem
• the existence of sets with prescribed constant mean curvature
• total variation denoising models
• the minimum flow-maximum cut problem
• elasto-plastic models of plate failure
• Bingham fluids and landslide models
• an elementary proof of the Prime Number Theorem (Ω = a square)

Generalization: cluster Cheeger sets after [Caroccia] and [Caroccia-Littig]
2/21



An abstract formulation

The definition of the Cheeger problem only requires two ingredients:

a measure space (X,A ,m) and a perimeter functional P : A → [0,+∞].

Indeed, one can consider a set Ω ∈ A and define

h(Ω) = inf
!
P (E)

m(E)
: E ⊂ Ω, m(E) > 0, P (E) < +∞

"
.

Well-posedness: P is proper (i.e., P ∕≡ +∞) and Ω is admissible (the inf set ∕= ∅).

Main idea: treat local (weighted, Riemannian, sub-Riemannian, CD, discrete) and
non-local (fractional, distributional) perimeter functionals at the same time.

Question: which assumptions on (X,A ,m) and P ensure:

• existence of Cheeger sets?
• the relation with the first 1-eigenvalue?
• the relation with the first p-eigenvalue for p ∈ (1,+∞)? [local perimeters]
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Related literature on abstract formulations

An abstract point of view has already be considered in the literature:

◮ Buttazzo & Velichkov, Shape optimization problems on metric measure spaces,
J. Funct. Anal. (2013)

◮ Chambolle, Morini, Ponsiglione, Nonlocal curvature flows, ARMA (2015)

◮ Barozzi & Massari, Variational mean curvatures in abstract measure spaces,
Calc. Var. PDE (2016)

◮ Górny & Mazón, The Anzellotti-Gauss-Green formula and least gradient
functions in metric measure spaces, ESAIM COCV (2021)

◮ Buffa, Kinnunen & Pacchiano Camacho, Variational solutions to the total
variation flow on metric measure spaces Nonlinear Anal. (2021)

◮ Buffa, Collins & Pacchiano Camacho, Existence of parabolic minimizers to the
total variation flows on metric measure spaces, Manuscripta Math. (2022)

◮ Novaga, Paolini, Stepanov & Tortorelli, Isoperimetric clusters in homogeneous
spaces via concentration compactness, J. Geom. Anal. (2022)
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Existence of Cheeger sets

The existence of Cheeger sets follows from a simple compactness argument
relying on lower semicontinuity, compactness and isoperimetric properties of P :

(lsc) P is lower semicontinuous w.r.t. L1(X,m) convergence

(comp) {E ⊂ Ω, m(Ω) < +∞ : P (E) ≤ c} is compact in L1(X,m)

(isop) m(E) ≤ ε =⇒ P (E) ≥ f(ε)m(E) with lim
ε→0+

f(ε) = +∞

Existence of Cheeger sets

Let Ω ∈ A be an admissible set with m(Ω) ∈ (0,+∞).

(lsc) + (comp) + (isop) =⇒ Ω admits Cheeger sets

Proof. Pick a minimizing sequence (Ek)k . Since P (Ek) ≤ 2m(Ek)h(Ω), by (comp)
we find a limit set E ⊂ Ω. By (isop) we have m(E) ∈ (0,m(Ω)]. By (lsc) we get
that E is a minimizer. QED
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Basic properties

Basic properties of the Cheeger constant and of Cheeger sets exploit the above
assumptions and, possibly, the sub-modularity property of P :

(sub) P (E ∩ F ) + P (E ∪ F ) ≤ P (E) + P (F )

Basic properties of Cheeger constant

• Ω1 ⊂ Ω2 =⇒ h(Ω1) ≥ h(Ω2)

• (isop) : m(Ωk) → 0+ =⇒ h(Ωk) → +∞

• (lsc) + (comp) + (isop): Ωk
L1

→ Ω, m(Ω) ∈ (0,+∞) =⇒ h(Ω) ≤ lim infk h(Ωk)

+ (sub): P (Ωk) → P (Ω) < +∞ =⇒ h(Ω) = limk h(Ωk)

Basic properties of Cheeger sets

• (isop): m(E) ≥ c for all Cheeger sets E , with c = c(h(Ω), f)

• (sub): Cheeger sets are stable w.r.t. union and non-negligible intersection
+ (lsc): countable unions and non-negligible countable intersections

• (lsc) + (comp) + (isop) + (sub): minimal and maximal Cheeger sets
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BV functions via coarea formula

The (total) variation of a measurable function u ∈ L0(X,m) is

Var(u) =

#
$%

$&

'

R
P ({u > t}) dt if t -→ P ({u > t}) is L1-measurable

+∞ otherwise

following the idea of [Visintin] and [Chambolle-Giacomini-Lussardi], so that

BV (X,m) =
(
u ∈ L1(X,m) : Var(u) < +∞

)
.

(empty) P (∅) = 0 (space) P (X) = 0

Properties of variation

• Var(λu) = λVar(u) for λ > 0 and Var(u+ c) = Var(u)
• (empty) + (space): Var(c) = 0 and Var(χE) = P (E)

• (lsc): Var is lower semicontinuous w.r.t. L1(X,m) convergence
• (empty) + (space) + (sub) + (lsc): Var is convex on L1(X,m)

In particular, last point implies BV (X,m) is a convex cone in L1(X,m).
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The first 1-eigenvalue

Define BV0(Ω) = {u ∈ BV (X,m) : u = 0 m-a.e. in X \ Ω} and do not care of ∂Ω.

Assume (empty) + (space), Ω admissible (so BV0(Ω,m) ∕= {0}), m(Ω) ∈ (0,+∞).

The first 1-eigenvalue of Ω is (we allow sign-changing functions!)

λ1,1(Ω) = inf
!

Var(u)
‖u‖1

: u ∈ BV0(Ω,m), ‖u‖1 > 0

"
∈ [0,+∞).

(sym) P (X \ E) = P (E)

Symmetric coarea formula

(lsc) + (sym) =⇒ Var(u) =
' 0

−∞
P ({u < t}) dt+

' +∞

0

P ({u > t}) dt

Link with first 1-eigenvalue

• λ1,1(Ω) ≤ h(Ω)

• (lsc) + (sym): λ1,1(Ω) = h(Ω)

In particular, non-negligible level sets of minimizers of λ1,1(Ω) are Cheeger sets.
8/21



Relative functionals

To deal with first p-eigenvalue, namely, Sobolev functions, we need local functionals.
We need a topological space (X,T ), A = B(X) Borel σ-algebra and m Borel.

We reinforce the (total) perimeter functional to the relative perimeter functional:

B(X) ∋ E -→ P (E;A) for any given open set A ∈ T .

The interesting properties now become:

(empty)R P (∅;A) = 0

(space)R P (X;A) = 0

(sub)R P (E ∩ F ;A) + P (E ∪ F ;A) ≤ P (E;A) + P (F ;A)

(lsc)R P ( · ;A) is lower semicontinuous w.r.t. L1(X,m) convergence

The relative variation is defined as before as

Var(u;A) =

#
$%

$&

'

R
P ({u > t};A) dt if t -→ P ({u > t};A) is L1-measurable

+∞ otherwise

and consequently we recover BV (X,m) =
(
u ∈ L1(X,m) : Var(u;X) < +∞

)
.
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Perimeter and variation measures

Relative functionals P ( · ;A) and Var( · ;A) inherit same properties of total ones.

Perimeter measure

A set E ∈ B(X) has finite perimeter measure if P (E; · ) : B(X) → [0,+∞) is a
finite outer regular Borel measure on X .

Variation measure

A function u ∈ L0(X,m) has finite variation measure if:
• the set {u > t} has finite perimeter measure for L1-a.e. t ∈ R;
• Var(u; · ) : B(X) → [0,+∞) is a finite outer regular Borel measure on X .

Notation: u ∈ L0(X,m) has finite variation measure =⇒ Var(u; · ) = |Du|( · ),
BV(X,m) =

(
u ∈ L1(X,m) : u has finite variation measure

)
⊂ BV (X,m).

Under (empty)R + (space)R + (sub)R + (lsc)R we have

|D(λu)| = λ|Du| for λ > 0, |D(u+ c)| = |Du|, |Dc| = 0,

but BV(X,m) may NOT be closed w.r.t. sum!

Example: intrinsic BV functions between subgroups in Carnot groups as in
[Franchi-Serapioni-Serra Cassano] and [Di Donato-Le Donne].
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Generalized coarea formula and chain rule

Generalized coarea formula

If u ∈ L0(X,m) has finite variation measure, then'

A

ϕ d|Du| =
'

R

'

A

ϕ d|Dχ{u>t}| dt

for all ϕ ∈ L0(X,m), ϕ ≥ 0, and A ∈ B(X).

(local)R E ∈ T =⇒ P (E;A) = 0 for all A ∈ B(X) with P (E;A ∩ ∂E) = 0

Chain rule

Assume (empty)R + (space)R + (local)R and let ϕ ∈ C1(R) be strictly increasing. If
u ∈ C(X) has finite variation measure, then ϕ(u) has finite variation measure, with

|Dϕ(u)| = ϕ′(u) |Du|.

Proof. Var(ϕ(u);A) =

'

R
P ({ϕ(u) > t};A) dt =

'

R
P (

(
u > ϕ−1(t)

)
;A) dt =

'

R
ϕ′(s)

'

A

d|Dχ{u>s}| ds
(!)
=

'

R

'

A

ϕ′(u) d|Dχ{u>s}| ds
(coarea)
=

'

A

ϕ′(u) d|Du|

("): ∂{u > s} ⊂ {u = s} =⇒ |Dχ{u>s}|(A ∩ {u ∕= s}) = 0. QED
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Sobolev W1,1 functions

Recall that

BV(X,m) =
(
u ∈ L1(X,m) : u has finite variation measure

)
⊂ BV (X,m),

so we can define

W1,1(X,m) = {u ∈ BV(X,m) : |Du| ≪ m} ⊂ BV(X,m)

so that

u ∈ W1,1(X,m) =⇒ |Du|(A) =

'

A

|∇u| dm with |∇u| ∈ L1(X,m) the 1-slope

Under (empty)R + (space)R + (sub)R + (lsc)R we have

|∇(λu)| = λ|∇u| for λ > 0, |∇(u+ c)| = |∇u|, |∇c| = 0,

but W1,1(X,m) may NOT be closed w.r.t. sum! (recall intrinsic functions in groups)

From now on we shall assume that

(sum)R u, v ∈ BV(X,m) =⇒ u+ v ∈ BV(X,m)

so that both BV(X,m) and W1,1(X,m) are convex cones in L1(X,m).
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Sobolev W1,p functions for p ∈ (1,+∞)

p-relaxed 1-slope

We say G ∈ Lp(X,m) is p-relaxed 1-slope of u ∈ Lp(X,m) if

∃ {uk}k ⊂ W1,1(X,m) ∩ Lp(X,m) and ∃ g ∈ Lp(X,m)
such that
• uk → u in Lp(X,m)

• |∇uk| ∈ Lp(X,m) and |∇uk| ⇀ g weakly in Lp(X,m)

• g ≤ G m-a.e. in X

From now on, we assume (empty)R + (space)R + (sub)R + (lsc)R + (sum)R, so that

Slopep(u) = {G ∈ Lp(X,m) : G is a p-relaxed 1-slope of u}

is a (possibly empty) convex closed subset of Lp(X,m) for any u ∈ Lp(X,m).

We can thus define

W1,p(X,m) =
(
u ∈ Lp(X,m) : Slopep(u) ∕= ∅

)

and weak p-slope of u ∈ W1,p(X,m) is |∇u|p ∈ Slopep(u) with minimal Lp norm.
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Strong approximation, W 1,p
0 (Ω,m) and the first p-eigenvalue

From now on Ω ⊂ X is a non-empty open set.

Strong approximation

If u ∈ W1,p(X,m) then ∃{uk}k ⊂ W1,1(X,m) ∩ Lp(X,m) such that

|∇uk| ∈ Lp(X,m) and uk → u, |∇uk| → |∇u|p strongly in Lp(X,m).

The space W 1,p
0 (Ω,m)

We say that u ∈ W 1,p
0 (Ω,m) if ∃{uk}k ⊂ W1,1(X,m) ∩ Lp(X,m) such that

• |∇uk| ∈ Lp(X,m)

• uk → u and |∇uk| → |∇u|p strongly in Lp(X,m)

• uk ∈ C(X) with suppuk ⊂ Ω

We say Ω is p-regular if W1,p
0 (Ω,m) ∕= {0}.

The first p-eigenvalue of a p-regular Ω is

λ1,p(Ω) = inf
!‖|∇u|p‖pp

‖u‖pp
: u ∈ W1,p

0 (Ω,m), ‖u‖p > 0

"
∈ [0,+∞).
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Link with the first p-eigenvalue

From now on Ω ⊂ X is a non-empty open p-regular set.

Link with first p-eigenvalue

λ1,p(Ω) ≥
*
λ1,1(Ω)

p

+p

and λ1,1(Ω) = h(Ω) if Ω is admissible and P ( · ;X) is (sym)

Proof. [Cheeger], [Lefton-Wei], [Kawohl-Fridman] Let u ∈ W1,p
0 (Ω,m) with ‖u‖p > 0.

Approximation: ∃{uk}k ⊂ W1,1(X,m) ∩ Lp(X,m) with |∇uk| ∈ Lp(X,m) such
that uk → u, |∇uk| → |∇u|p strongly in Lp(X,m), and uk ∈ C(X), suppuk ⊂ Ω.

Let ϕ(r) = r|r|p−1, r ∈ R: ϕ ∈ C1(R) strictly increasing, ϕ′(r) = p|r|p−1, r ∈ R.

Chain rule: ϕ(uk) ∈ W1,1(X,m) ∩ C(X) with |∇ϕ(uk)| = p|uk|p−1|∇uk|.

Since suppϕ(uk) ⊂ Ω, we get ϕ(uk) ∈ BV0(Ω,m), with

Var(ϕ(uk);X) = ‖|∇ϕ(uk)|‖1 = p

'

X

|uk|p−1|∇uk| dm ≤ p‖uk‖p−1
p ‖|∇uk|‖p.

Therefore

λ1,1(Ω) ≤
Var(ϕ(uk);X)

‖ϕ(uk)‖1
≤

p‖uk‖p−1
p ‖|∇uk|‖p
‖uk‖pp

= p
‖|∇uk|‖p
‖uk‖p

and the conclusion follows letting k → +∞ and then taking the inf. QED
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Application #1: Distributional Fractional Variation (Comi-S.) [1/2]

Let Ω ⊂ Rn be a non-empty open set.

For s ∈ (0, 1) and p ∈ [1,+∞], the distributional s-variation of u ∈ Lp(Rn) in Ω is

|Dsu|(Ω) = sup
!'

Rn

u divsϕ dx : ϕ ∈ C∞
c (Rn;Rn), ‖ϕ‖∞ ≤ 1, suppϕ ⋐ Ω

"
,

where the s-fractional divergence of ϕ is given by

divsϕ(x) = cn,s

'

Rn

(y − x) · (ϕ(y)− ϕ(x))

|y − x|n+s+1
dy, x ∈ Rn.

We let P (E;A) = |DsχE |(A), Var(u;A) = |Dsu|(A) for any open A ⊂ Rn and

BV s(Ω) =
(
u ∈ L1(Rn) : |Dsu|(Ω) < +∞

)
.

Distributional meaning: u ∈ L1(Rn) is in BV s(Ω) ⇐⇒ ∃Dsu ∈ M (Ω;Rn) s.t.
'

Rn

u divsϕ dx = −
'

Ω

ϕ · dDsu for all ϕ ∈ C∞
c (Ω;Rn).

Fractional comparison: W s,1(Rn) ⊊ BV s(Rn) and |DsχE |(Ω) ≤ cn,sPs(E;Ω).
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Application #1: Distributional Fractional Variation (Comi-S.) [2/2]

Properties [Comi-S.]

• |Ds · | is translation invariant and (n− s)-homogeneous
• |Dsχ∅| = |DsχRn | = 0, |DsχRn\E | = |DsχE |
• |Dsu|(Rn) ≤ lim infk |Dsuk|(Rn) < +∞ for uk → u in L1(Rn)

• {uk}k ⊂ BV s(Rn) bounded =⇒ ∃{ukh
}h L1

loc-converging to u ∈ BV s(Rn)

• BV s(Rn) ⊂ L
n

n−s (Rn) with ‖u‖
L

n
n−s

≤ cn,s|Dsu|(Rn) for n ≥ 2

Bad news [Comi-S.]

• locality fails: ∃χE ∈ BV (Rn) such that supp |DsχE | ∕⊂ ∂E (but ⊂ F sE)
• coarea formula fails: ∃u ∈ BV s(Rn) with t -→ |Dsχ{u>t}|(Rn) /∈ L1(R)
• submodularity of perimeter is unknown

Applications

◮ Cheeger sets exist in any open set Ω ⊂ Rn with |Ω| < +∞
◮ CMC sets in Ω exist for κ ≥ h(Ω), being Cheeger sets for κ = h(Ω)

◮ λ1,1(Ω)≤h(Ω), but the inequality may be strict
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Application #2: Non-local Variation (Bessas-S.) [1/3]

Let K : Rn → [0,+∞] be a kernel.

The non-local K-variation of u ∈ L0(Rn) is

[u]K =
1

2

'

Rn

'

Rn

|u(x)− u(y)|K(x− y) dx dy

so that BV K(Rn) =
(
u ∈ L1(Rn) : [u]K < +∞

)
. Notation: PK(E) = [χE ]K .

Examples

• K ∈ L1(Rn) =⇒ BV K(Rn) = L1(Rn) [Mazón-Rossi-Toledo]
• K = | · |−n−s =⇒ BV K(Rn) = W s,1(Rn) [Caffarelli-Roquejoffre-Savin]

We focus on the non-integrable case K /∈ L1(Rn) only.

Properties

• [ · ]K is translation invariant, PK(∅) = PK(Rn) = 0, PK(Rn \ E) = PK(E)

• uk → u in L1
loc(R

n) =⇒ [u]K ≤ lim infk[uk]K (Fatou)
• [u ∧ v]K + [u ∨ v]K ≤ [u]K + [v]K
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Application #2: Non-local Variation (Bessas-S.) [2/3]

Isoperimetric inequality [Cesaroni-Novaga], [De Luca-Novaga-Ponsiglione]

K radially symmetric decreasing =⇒ PK(E) ≥ PK(B|E|), with |B|E|| = |E|

(with equality ⇐⇒ E is a ball, if K strictly decreasing in a ngbh of the origin)

Note that lim
v→0+

PK(Bv)/v = +∞ [Cesaroni-Novaga].

Compactness [Bessas-S.]

K /∈ L1(Rn), K ∈ L1(Rn \Br) for all r > 0

|x| ≤ |y| =⇒ K(x) ≥ K(y), |y| = 2|x|, |x| ≤ 2D =⇒ K(y) ≤ CK(x)

⇓
{uk}k ⊂ BV K(Rn) bounded =⇒ ∃{ukh

}h L1
loc-converging to u ∈ BV K(Rn)

Application

◮ Cheeger sets exist in any open set Ω ⊂ Rn with |Ω| < +∞
◮ CMC sets in Ω exist for κ ≥ h(Ω), being Cheeger sets for κ = h(Ω)

◮ λ1,1(Ω)=h(Ω), with characterization of minimizers
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Application #2: Non-local Variation (Bessas-S.) [3/3]

Assume q-decreasing property: |x| ≤ |y| =⇒ K(x)|x|q ≥ K(y)|y|q for q ≥ 0.

Monotonicity [Bessas-S.]

0 < r ≤ R < +∞ =⇒ PK(rE)

|rE|2− q
n

≥ PK(RE)

|RE|2− q
n

In particular, v -→ PK(Bv)v
q
n−2 is decreasing (take E = B).

Isoperimetric inequality for small volumes [Bessas-S.]

K radial and q < n+ 1: |E| ≤ |B| =⇒ PK(E)

|E|2− q
n

≥ PK(B)

|B|2− q
n

A priori estimates [Bessas-S.]

Assume K radial and q ∈ (n, n+ 1).

• E ⊂ Ω Cheeger set =⇒ |E| q
n−1 ≥ PK(B|Ω|)

|Ω|2− q
n h(Ω)

• u ∈ BV K
0 (Ω) eigenfunction =⇒ ‖u‖L∞(Ω) ≤

*
|Ω|2− q

n h(Ω)

PK(B|Ω|)

+ n
q−n

‖u‖L1(Ω)
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THANK YOU FOR YOUR ATTENTION!

Slides available via giorgio.stefani.math@gmail.com or giorgiostefani.weebly.com.
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