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Warm up: the Cheeger problem in R™

Let @ C R™ be a non-empty bounded open set with Lipschitz boundary

The Cheeger problem is the isoperimetric-type optimization problem

h(2) = inf{PgT) :ECQ, |[E|l> 0} € [0, +00).

The number A () is the Cheeger constant and any minimizer is a Cheeger set of €.

This problem was introduced by Maz'ya (1962) and Cheeger (1969) and links to:
lower bounds for the first eigenvalue of the Dirichlet p-Laplacian operator
the creep torsion problem

the existence of sets with prescribed constant mean curvature

total variation denoising models

the minimum flow-maximum cut problem

elasto-plastic models of plate failure

Bingham fluids and (andslide models

an elementary proof of the Prime Number Theorem (Q = a square)

Generalization: cluster Cheeger sets after [Caroccia] and [Caroccia-Littig]
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An abstract formulation

The definition of the Cheeger problem only requires two ingredients:

a measure space (X, </, m) and a perimeter functional P: & — [0, +o0].

Indeed, one can consider a set 2 € o7 and define

h(2) = inf{% :ECQ, m(E)>0, P(E) < —|—oo}.

Well-posedness: P is proper (ie., P # +oo) and  is admissible (the inf set # ().

Main idea. treat local (weighted, Riemannian, sub-Riemannian, CD, discrete) and
non-local (fractional, distributional) perimeter functionals at the same time.
Question: which assumptions on (X, «/, m) and P ensure:

e existence of Cheeger sets?

o the relation with the first 1-eigenvalue?

o the relation with the first p-eigenvalue for p € (1, +00)? [local perimeters]
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Related literature on abstract formulations

An abstract point of view has already be considered in the literature:

» Buttazzo & Velichkov, Shape optimization problems on metric measure spaces,
d- Funct. Anal. (2013)

» Chambolle, Morini, Ponsiglione, Nonlocal curvature flows, ARMA (2015)

» Barozzi & Massari, Variational mean curvatures in abstract measure spaces,
Calc. Var. PDE (2016)

» GOrny & Mazon, The Anzellotti-Gauss-Green formula and least gradient
functions in metric measure spaces, ESAM COCV (2021)

» Buffa, Kinnunen & Pacchiano Camacho, Variational solutions to the total
variation flow on metric measure spaces Nonlinear Anal. (2021)

» Buffa, Collins & Pacchiano Camacho, Existence of parabolic minimizers to the
total variation flows on metric measure spaces, Manuscripta Math. (2022)

» Novaga, Paolini, Stepanov & Tortorelli, Isoperimetric clusters in homogeneous
spaces via concentration compactness, 4. Geom. Anal. (2022)
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Existence of Cheeger sets

The existence of Cheeger sets follows from a simple compactness argument
relying on lower semicontinuity, compactness and isoperimetric properties of P:

(Isc) Pis lower semicontinuous wrt. L*(X,m) convergence
(comp) {ECQ, m(Q) < +oo: P(E) < c} is compact in L'(X,m)
(isop) m(E) <e = P(E) > f(e)m(E) with lim+ fle) =40
e—0
Existence of Cheeger sets
Let Q € o7 be an admissible set with m(£2) € (0, +00).

(Isc) + (comp) + (isop) = § admits Cheeger sets
Proof. Pick a minimizing sequence (Ey)x. Since P(Ey) < 2m(Ey) h(€2), by (comp)

we find a limit set £ c Q. By (isop) we have m(E) € (0, m(€2)]. By (lsc) we get
that E is a minimizer. QED
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Basic properties

Basic properties of the Cheeger constant and of Cheeger sets exploit the above
assumptions and, possibly, the sub-modularity property of P

(sib) P(ENF)+P(EUF)<P(E)+ P(F)
Basic properties of Cheeger constant

[ Ql C QQ —— h(Ql) Z h(QQ)
e (isop): m(Q) —» 07 = h(%) = 40

o (Isc) + (comp) + (is0p): QU 5 Q, m(Q) € (0, +00) = h(Q) < lminfy A(%)
+ (SUb): P(Q) = P(Q) < +o0 = () = limy, ()
Basic properties of Cheeger sets

e (isop): m(E) > ¢ for all Cheeger sets E, with ¢ = ¢(h(2), f)

e (suUb): Cheeger sets are stable wrt. union and non-negligble intersection
+ (1s¢): countable unions and non-negligible countable intersections

e (lsc) + (comp) + (isop) + (sub): minimal and maximal Cheeger sets
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BV functions via coarea formula

The (total) variation of a measurable function v € L°(X,m) is

/ P({u>t})dt ift— P({u>t})is L1-measurable
Var(u) = ¢ /R

400 otherwise

following the idea of [Visintin] and [Chambolle-Giacomini-Lussardi], so that
BV(X,m) = {u € L}(X, m) : Var(u) < +oo}.
(empty) P(0) =0 (space) P(X)=0

Properties of variation

e Var(Au) = AVar(u) for A > 0 and Var(u + ¢) = Var(u)
e (empty) + (space): Var(c) = 0 and Var(xg) = P(E)
e (lsc): Var is lower semicontinuous wrt. L(X, m) convergence
e (empty) + (space) + (sub) + (lsc): Var is convex on L' (X, m)
In particular, last point implies BV (X, m) is a convex cone in L' (X, m).
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The first 1-eigenvalue

Define BVy(Q) = {u € BV(X,m) : u=0m-ae. in X \ Q} and do not care of oQ.
Assume (empty) + (space), Q admissible (so BVy(2,m) # {0}), m(2) € (0, +00).

The first 1-eigenvalue of 2 is (we allow sign-changing functions!)
)\1,1<Q) = lnf{% U € B%(Q,m), HUHl > 0} € [O,+OO)
1

(sym) P(X\ E) = P(E)
Symmetric coarea formula

0
(Isc) + (sym) = Var(u) :/

—+oo
P({u< t})dt+/ P({u > t})dt
—00 0
Link with first 1-eigenvalue
o A\1(R2) < h(Q)
o (Isc) + (sym): A1,1(Q) = h(R)
In particular, non-negligible level sets of minimizers of Ay 1(£2) are Cheeger sets.
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Relative functionals
To deal with first p-eigenvalue, namely, Sobolev functions, we need local functionals.
We need a topological space (X, .7), o = %B(X) Borel o-algebra and m Borel.

We reinforce the (total) perimeter functional to the relative perimeter functional:
B(X)> E— P(E;A) for any given open set A € 7.
The interesting properties now become.
(empty)e  P(B; A) =0

(space)p P(X;A) =
(sub)r (EmF A)+P(EUF A) < P(E;A)+ P(F; A)
(Isc)z  P(-;A) is lower semicontinuous wrt. L*(X,m) convergence

The relative variation is defined as before as

/ P({u >t} A)dt ift— P({u>t};A)is L1-measurable
Var(u; A) = ¢ /R

+00 otherwise

and consequently we recover BV (X, m) = {u € L*(X, m) : Var(u; X) < +oo}.
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Perimeter and variation measures

Relative functionals P(-;A) and Var(-; A) inherit same properties of total ones.

Perimeter measure
A set E € (X)) has finite perimeter measure if P(E; -): B(X) — [0, +00) is &
finite outer regular Borel measure on X.
Variation measure
A function v € L°(X, m) has finite variation measure if:
o the set {u > t} has finite perimeter measure for £!-ae. t € R;
e Var(u; -): B(X) — [0,+00) is a finite outer regular Borel measure on X.

Notation: u € L°(X, m) has finite variation measure = Var(u; -) = |Dul(-),
BV(X,m) = {u € L*(X,m) : u has finite variation measure} ¢ BV (X, m).
Under (empty) + (space)r + (sub)r + (IsC)r we have
|[D(Au)| = A|Du| for A >0, |D(u+c)|=|Du|, |Dc|=0,
but BV(X, m) may NOT be closed w.rt. sum!

Example: intrinsic BV functions between subgroups in Carnot groups as in
[Franchi-Serapioni-Serra Cassano] and [Di Donato-Le Donne].
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Generalized coarea formula and chain rule

Generalized coarea formula
If w e LO(X, m) has finite variation measure, then

[edipd = [ [ ¢dDxsald

A RJA

for all ¢ € L°(X,m), ¢ > 0,and A € B(X).

(local)p Fe 7 = P(E;A)=0forall A e #(X)with P(E;ANOE) =0

Chain rule

Assume (empty)r + (space)r + (local)r and let ¢ € C(R) be strictly increasing. If
u € C(X) has finite variation measure, then p(u) has finite variation measure, with

|De(u)] = @' (u) |Dul.

Proof. Var(p(u); A) = / P({p(u) > t}; A) dt = /P{u><p L(t)}; A) dt =

/ / dIDX sy ds & / / () dDx sy ds 2 /A o/ (w) d| Dyl

(K): {u > s} C{u=s} = |Dxpussi/(AN{u+#s}) =0 QED
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Sobolev W™ functions
Recall that
BV(X,m) = {u € L*(X, m) : u has finite variation measure} ¢ BV (X, m),
S0 we can define
WX, m) = {u € BV(X,m) : |Du| < m} C BV(X,m)
So that

ue WH (X, m) = |Dul(A / |Vu|dm  with [Vu| € L'(X, m) the 1-slope

Under (empty) + (space)r + (sub)r + (IsC)r we have
IV(w)| = A[Vu| for A >0, |V(u+c)|=]|Vu|, [Vc|=0,
but W' (X, m) may NOT be closed wrt. sum! (recall intrinsic functions in groups)
From now on we shall assume that
(sumk u,v € BV(X,m) = u+v € BV(X,m)

so that both BV(X, m) and W' (X, m) are convex cones in L'(X,m).
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Sobolev W' functions for p € (1, 4oc0)

p-relaxed 1-slope
We say G € LP(X,m) is p-relaxed 1-slope of u € LP(X, m) if

I{ug}, c WX, m)NLP(X,m) and Tge LP(X,m)
such that

e up — uin LP(X,m)
o |Vug| € LP(X, m) and [Vug| — g weakly in LP (X, m)
e g<Gmae inX

From now on, we assume (empty)z + (space)y + (sub)r + (sC)r + (sum)g, so that
Slope,(u) = {G € LP(X,m) : G is a p-relaxed 1-slope of u}
is a (possibly empty) convex closed subset of LP(X, m) for any u € LP (X, m).
We can thus define
W'P(X,m) = {u € LP(X,m) : Slope, (u) # 0}

and weak p-slope of u € WHP(X, m) is |Vu|, € Slope,(u) with minimal LP norm.
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Strong approximation, W, (22, m) and the first p-eigenvalue
From now on £ C X is a non-empty open set.

Strong approximation

If w € WHP(X, m) then 3{us.},, € WH' (X, m) N LP(X, m) such that

|Vug| € LP(X,m) and wur — u, |Vug| = |Vul, strongly in LP(X, m).

The space WP (€, m)

We say that u € W, (Q,m) if I{ux}, € WH(X,m) N LP(X, m) such that
o |Vug| € LP(X, m)
e up — u and |Vug| — |Vul, strongly in LP(X, m)
o uy € C(X) with suppuy, C 2

We say Q is pregular if Wy (€, m) # {0}.

The first p-eigenvalue of a p-regular Q is

Ap(Q) = lnf{ Iv T ||p” cu e WP (Q,m), |ull, > 0} € [0, +00).
p
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Link with the first p-eigenvalue

From now on ©Q C X is a non-empty open p-regular set.
Link with first p-eigenvalue

p
Ap () > (/\1le9)> and \1,1(Q2) = h(Q) if Q is admissible and P(-; X) is (sym)

Proof. [Cheeger], [Lefton-Wei], [Kawohl-Fridman] Let u € W4P(Q, m) with [Jul], > 0.

Approximation: 3{uy},, € WH (X, m) N LP(X, m) With |Vuy,| € LP(X, m) such
that ur, — u, [Vuk| = |Vul, strongly in LP(X, m), and uy, € C(X), suppuy C Q.

Let o(r) = r|r|P~1, r € R: p € CY(R) strictly increasing, ¢'(r) = p|r|P~1,r € R
Chain rule: p(uy) € WHHX, m) N C(X) with [V (u)| = plus? | V).
Since supp p(uk) C 2, we get p(uy) € BVy(£2,m), with
Var(p(ur); X) = [[[Vep(ur)llln = P/X |urP V| dm < pllug |57Vl |lp.
Therefore
Var(p(ug); X) _ plluel3 = 1IIVurllly [V,

A1(Q) < < =p
llo(ur) 1 lluellp ([wkllp

and the conclusion follows letting k¥ — +oo and then taking the inf. QED
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Application # I Distributional Fractional Variation (Comi-S.) [ /2]

Let @ C R™ be a non-empty open set.

For s € (0,1) and p € [1, +o0], the distributional s-variation of u € LP(R™) in Q is
|D3u|(Q2) = sup{/ wdv’pdz : p € C°(R™R™), [¢llo < 1, SUPPp E Q},

where the s-fractional divergence of ¢ is given by

We let P(E; A) = |D*xg|(A), Var(u; A) = |D%u|(A) for any open A € R™ and

n

BV*(Q) = {u € L'(R") : [D*u|(Q) < +o0}.
Distributional meaning: u € L*(R") is in BV*(Q) <= 3ID%u € .4 (;R") st.

/ wdvipdr = —/ o-dD*u  forall p € C°(R™).
n )

Fractional comparison: W#1(R") ¢ BV*(R") and |D*xg|(Q) < cn s Ps(E; Q).
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Application # I Distributional Fractional Variation (Comi-S.) [2/2]

Properties [Comi-S]
e |D# - | is translation invariant and (n — s)-homogeneous
o |Dxp| = [D*xgn| = 0, [D*)Xrn\E| = |D*XE|
o |D*u|(R™) < liminfy |Dug|(R™) < 400 for uy — u in L*(R™)
o {ur}, C BV*(R") bounded = F{uy, }, Li,-convergingtou € BV*(R™)
e BV*(R") C L7 (R™) with lull, 2+ < en,s|D*ul(R™) for n > 2

w—

Bad news [Comi-S)
e locality fails: 3xg € BV(R™) such that supp |Déxg| ¢ OF (but C F*E)
e coarea formula fails: Ju € BV*(R™) with t = |D*x{u>4|(R™) & L(R)
e submodularity of perimeter is unknown

Applications
» Cheeger sets exist in any open set  C R™ with |Q| < 400
» CMC sets in Q exist for k > h(Q), being Cheeger sets for k = h(€2)
> A1,1(Q) <h(Q), but the inequality may be strict
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Application #2: Non-local Variation (Bessas-S.) [ /3]

Let K: R™ — [0, +o00] be a kernel.

The non-local K-variation of u € L°(R") is

=3 [ [ lule) = )| K@ —v) dody
so that BVE(R™) = {u € L*(R") : [u]x < +oo}. Notation: Px (E) = [xg]x

Examples

e K e L'(R") = BVE(R") =LY R") [Mazdén-Rossi-Toledo]

e K=|.-|7"* = BVX([R")=W*R") [Caffarelli-Roquejoffre-Savin]
We focus on the non-integrable case K ¢ L*(R™) only.
Properties

e [-]k is translation invariant, Px (0) = P (R™) = 0, Pk (R™\ E) = Pk (E)
o up » uin L (R") = [u]x < liminfyfux]x (Fatou)
o [uNvkg + [uVolg < [ulx + vk
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Application #2: Non-local Variation (Bessas-S.) [2/2]

Isoperimetric inequality [Cesaroni-Novagal], [De Luca-Novaga-Ponsiglione]
K radially symmetric decreasing = Py (E) > Pg(BIE)), with |BIFl| = |E|

(with equality <= E is a ball, if K strictly decreasing in a ngbh of the origin)
Note that (m Pg(B")/v = +oo [Cesaroni-Novagal.

—0t
Compactness [Bessas-S]
K ¢ L'(R"), KeL'(R"\B,) foralr>0
2] < [yl = K(x) 2 K(y), |yl =2z, |2| £2D = K(y) < CK(z)

4

{ur}, € BVE(R™) bounded = FH{uy, }, L -convergingtou € BV (R™)

Application

» Cheeger sets exist in any open set @ C R™ with || < 400
> CMC sets in Q exist for k > h(Q), being Cheeger sets for k = h(Q2)
> A1 1(92) =h(£2), with characterization of minimizers
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Application #2: Non-local Variation (Bessas-S.) [3/3]
Assume g-decreasing property: |z| < |y| = K(z)|z|? > K(y)|y|? for ¢ > 0.
Monotonicity [Bessas-S.]

PK(’I"E) > PK(RE)
[rE[>~% = |RE|*~=

In particular, v — P (BY)v=~2 is decreasing (take E = B).

0<r<R<+4+o0 =

Isoperimetric inequality for small volumes [Bessas-S]

Kradialandg<n+1: |E|<|B] = (q) (q)
g<ntl |BI<|Bl = ooy > o
A priori estimates [Bessas-S]
Assume K radial and ¢ € (n,n + 1).
P (B)

e £ CQCheegerset = |E|n—! > 2
Q> h(2)

o . EERRIONGE
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THANK YOU FOR YOUR ATTENTION!

Slides available via giorgio.stefanimath@gmail.com or giorgiostefani.weebly.com.
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