An Abstract Approach to the Cheeger Problem and Applications

Giorgio Stefani

Anisotropic Isoperimetric Problems & Related Topics

Rome, 8 September 2022

V. Franceschi, A. Pinamonti, G. Saracco and G. Stefani, The Cheeger problem in abstract measure spaces, available at <u>arXiv:2207.00482</u>.

G. E. Comi and G. Stefani, project on Distributional fractional spaces and fractional variation.

K. Bessas and G. Stefani, Non-local BV functions and a denoising model with L^1 fidelity.

Warm up: the Cheeger problem in \mathbb{R}^n

Let $\Omega \subset \mathbb{R}^n$ be a non-empty bounded open set with Lipschitz boundary.

The Cheeger problem is the isoperimetric-type optimization problem

$$h(\Omega) = \inf\left\{\frac{P(E)}{|E|} : E \subset \Omega, \ |E| > 0\right\} \in [0, +\infty).$$

The number $h(\Omega)$ is the Cheeger constant and any minimizer is a Cheeger set of Ω .

This problem was introduced by Maz'ya (1962) and Cheeger (1969) and links to:

- lower bounds for the first eigenvalue of the Dirichlet p-Laplacian operator
- the creep torsion problem
- the existence of sets with prescribed constant mean curvature
- total variation denoising models
- the minimum flow-maximum cut problem
- elasto-plastic models of plate failure
- Bingham fluids and landslide models
- an elementary proof of the Prime Number Theorem ($\Omega = a$ square)

Generalization: cluster Cheeger sets after [Caroccia] and [Caroccia-Littig]

An abstract formulation

The definition of the Cheeger problem only requires two ingredients:

a measure space $(X, \mathscr{A}, \mathfrak{m})$ and a perimeter functional $P \colon \mathscr{A} \to [0, +\infty]$.

Indeed, one can consider a set $\Omega\in \mathscr{A}$ and define

$$h(\Omega) = \inf \bigg\{ \frac{P(E)}{\mathfrak{m}(E)} : E \subset \Omega, \ \mathfrak{m}(E) > 0, \ P(E) < +\infty \bigg\}.$$

Well-posedness: P is proper (i.e., $P \neq +\infty$) and Ω is admissible (the inf set $\neq \emptyset$).

<u>Main idea</u>: treat local (weighted, Riemannian, sub-Riemannian, CD, discrete) and non-local (fractional, distributional) perimeter functionals at the same time.

<u>Question</u>: which assumptions on $(X, \mathscr{A}, \mathfrak{m})$ and P ensure:

- existence of Cheeger sets?
- the relation with the first 1-eigenvalue?
- the relation with the first *p*-eigenvalue for $p \in (1, +\infty)$? [local perimeters]

Related literature on abstract formulations

An abstract point of view has already be considered in the literature:

- Buttazzo & Velichkov, Shape optimization problems on metric measure spaces, J. Funct. Anal. (2013)
- ► Chambolle, Morini, Ponsiglione, Nonlocal curvature flows, ARMA (2015)
- Barozzi & Massari, Variational mean curvatures in abstract measure spaces, Calc. Var. PDE (2016)
- ► Górny & Mazón, The Anzellotti-Gauss-Green formula and least gradient functions in metric measure spaces, ESAIM COCV (2021)
- ► Buffa, Kinnunen & Pacchiano Camacho, Variational solutions to the total variation flow on metric measure spaces Nonlinear Anal. (2021)
- ► Buffa, Collins & Pacchiano Camacho, Existence of parabolic minimizers to the total variation flows on metric measure spaces, Manuscripta Math. (2022)
- Novaga, Paolini, Stepanov & Tortorelli, Isoperimetric clusters in homogeneous spaces via concentration compactness, J. Geom. Anal. (2022)

Existence of Cheeger sets

The existence of Cheeger sets follows from a simple compactness argument relying on lower semicontinuity, compactness and isoperimetric properties of P:

(lsc)
$$P$$
 is lower semicontinuous w.r.t. $L^1(X, \mathfrak{m})$ convergence
(comp) $\{E \subset \Omega, \mathfrak{m}(\Omega) < +\infty : P(E) \le c\}$ is compact in $L^1(X, \mathfrak{m})$
(isop) $\mathfrak{m}(E) \le \varepsilon \implies P(E) \ge f(\varepsilon)\mathfrak{m}(E)$ with $\lim_{\varepsilon \to 0^+} f(\varepsilon) = +\infty$

Existence of Cheeger sets

Let $\Omega \in \mathscr{A}$ be an admissible set with $\mathfrak{m}(\Omega) \in (0, +\infty)$.

 $(lsc) + (comp) + (isop) \implies \Omega$ admits Cheeger sets

<u>Proof</u>. Pick a minimizing sequence $(E_k)_k$. Since $P(E_k) \le 2\mathfrak{m}(E_k) h(\Omega)$, by (comp) we find a limit set $E \subset \Omega$. By (isop) we have $\mathfrak{m}(E) \in (0, \mathfrak{m}(\Omega)]$. By (isc) we get that E is a minimizer. QED

Basic properties

Basic properties of the Cheeger constant and of Cheeger sets exploit the above assumptions and, possibly, the sub-modularity property of P:

(sub)
$$P(E \cap F) + P(E \cup F) \le P(E) + P(F)$$

Basic properties of Cheeger constant

• $\Omega_1 \subset \Omega_2 \implies h(\Omega_1) \ge h(\Omega_2)$

• (isop):
$$\mathfrak{m}(\Omega_k) \to 0^+ \implies h(\Omega_k) \to +\infty$$

- (lsc) + (comp) + (isop): $\Omega_k \xrightarrow{L^1} \Omega, \mathfrak{m}(\Omega) \in (0, +\infty) \implies h(\Omega) \le \liminf_k h(\Omega_k)$
 - + (sub): $P(\Omega_k) \to P(\Omega) < +\infty \implies h(\Omega) = \lim_k h(\Omega_k)$

Basic properties of Cheeger sets

- (isop): $\mathfrak{m}(E) \ge c$ for all Cheeger sets E, with $c = c(h(\Omega), f)$
- (sub): Cheeger sets are stable w.r.t. union and non-negligible intersection
 + (lsc): countable unions and non-negligible countable intersections
- (lsc) + (comp) + (isop) + (sub): minimal and maximal Cheeger sets

BV functions via coarea formula

The (total) variation of a measurable function $u \in L^0(X, \mathfrak{m})$ is $\operatorname{Var}(u) = \begin{cases} \int_{\mathbb{R}} P(\{u > t\}) \, dt & \text{if } t \mapsto P(\{u > t\}) \text{ is } \mathcal{L}^1 \text{-measurable} \\ +\infty & \text{otherwise} \end{cases}$

following the idea of [Visintin] and [Chambolle-Giacomini-Lussardi], so that

 $BV(X,\mathfrak{m}) = \left\{ u \in L^1(X,\mathfrak{m}) : \forall \operatorname{ar}(u) < +\infty \right\}.$

(empty) $P(\emptyset) = 0$ (space) P(X) = 0

Properties of variation

- $Var(\lambda u) = \lambda Var(u)$ for $\lambda > 0$ and Var(u + c) = Var(u)
- (empty) + (space): Var(c) = 0 and $Var(\chi_E) = P(E)$
- (lsc): Var is lower semicontinuous w.r.t. $L^1(X, \mathfrak{m})$ convergence
- (empty) + (space) + (sub) + (lsc): Var is convex on $L^1(X, \mathfrak{m})$

In particular, last point implies $BV(X, \mathfrak{m})$ is a convex cone in $L^1(X, \mathfrak{m})$.

The first 1-eigenvalue

Define $BV_0(\Omega) = \{u \in BV(X, \mathfrak{m}) : u = 0 \mathfrak{m}\text{-a.e. in } X \setminus \Omega\}$ and do <u>not</u> care of $\partial\Omega$. Assume (empty) + (space), Ω admissible (so $BV_0(\Omega, \mathfrak{m}) \neq \{0\}$), $\mathfrak{m}(\Omega) \in (0, +\infty)$.

The first 1-eigenvalue of Ω is (we allow sign-changing functions!)

$$\lambda_{1,1}(\Omega) = \inf\left\{\frac{\operatorname{Var}(u)}{\|u\|_1} : u \in BV_0(\Omega, \mathfrak{m}), \ \|u\|_1 > 0\right\} \in [0, +\infty).$$

(sym)
$$P(X \setminus E) = P(E)$$

Symmetric coarea formula

$$(\mathsf{lsc}) + (\mathsf{sym}) \implies \forall \mathsf{ar}(u) = \int_{-\infty}^{0} P(\{u < t\}) \, dt + \int_{0}^{+\infty} P(\{u > t\}) \, dt$$

Link with first 1-eigenvalue

- $\lambda_{1,1}(\Omega) \le h(\Omega)$
- (lsc) + (sym): $\lambda_{1,1}(\Omega) = h(\Omega)$

In particular, non-negligible level sets of minimizers of $\lambda_{1,1}(\Omega)$ are Cheeger sets.

Relative functionals

To deal with first *p*-eigenvalue, namely, Sobolev functions, we need local functionals. We need a topological space $(X, \mathcal{T}), \mathcal{A} = \mathcal{B}(X)$ Borel σ -algebra and \mathfrak{m} Borel.

We reinforce the (total) perimeter functional to the relative perimeter functional: $\mathscr{B}(X) \ni E \mapsto P(E; A)$ for any given open set $A \in \mathscr{T}$.

The interesting properties now become:

 $\begin{array}{ll} (\mathsf{empty})_{\mathsf{R}} & P(\emptyset;A) = 0 \\ (\mathsf{space})_{\mathsf{R}} & P(X;A) = 0 \\ (\mathsf{sub})_{\mathsf{R}} & P(E \cap F;A) + P(E \cup F;A) \leq P(E;A) + P(F;A) \\ (\mathsf{lsc})_{\mathsf{R}} & P(\,\cdot\,;A) \text{ is lower semicontinuous w.r.t. } L^1(X,\mathfrak{m}) \text{ convergence} \end{array}$

The relative variation is defined as before as

 $\begin{aligned} \text{Var}(u;A) = \begin{cases} \int_{\mathbb{R}} P(\{u>t\};A)\,dt & \text{if } t\mapsto P(\{u>t\};A) \text{ is } \mathcal{L}^1\text{-measurable} \\ +\infty & \text{otherwise} \end{cases} \end{aligned}$

and consequently we recover $BV(X, \mathfrak{m}) = \left\{ u \in L^1(X, \mathfrak{m}) : \operatorname{Var}(u; X) < +\infty \right\}$.

Perimeter and variation measures

Relative functionals $P(\cdot; A)$ and $Var(\cdot; A)$ inherit same properties of total ones.

Perimeter measure

A set $E \in \mathscr{B}(X)$ has finite perimeter measure if $P(E; \cdot) : \mathscr{B}(X) \to [0, +\infty)$ is a finite outer regular Borel measure on X.

Variation measure

A function $u \in L^0(X, \mathfrak{m})$ has finite variation measure if:

- the set $\{u > t\}$ has finite perimeter measure for \mathcal{L}^1 -a.e. $t \in \mathbb{R}$;
- $Var(u; \cdot): \mathscr{B}(X) \to [0, +\infty)$ is a finite outer regular Borel measure on X.

<u>Notation</u>: $u \in L^0(X, \mathfrak{m})$ has finite variation measure $\implies \forall \operatorname{ar}(u; \cdot) = |Du|(\cdot),$ $\mathsf{BV}(X, \mathfrak{m}) = \{ u \in L^1(X, \mathfrak{m}) : u \text{ has finite variation measure} \} \subset BV(X, \mathfrak{m}).$

Under $(empty)_R$ + $(space)_R$ + $(sub)_R$ + $(lsc)_R$ we have

 $|D(\lambda u)| = \lambda |Du|$ for $\lambda > 0$, |D(u+c)| = |Du|, |Dc| = 0,

but $BV(X, \mathfrak{m})$ may <u>NOT</u> be closed w.r.t. sum!

Example: intrinsic *BV* functions between subgroups in Carnot groups as in [Franchi-Serapioni-Serra Cassano] and [Di Donato-Le Donne].

Generalized coarea formula and chain rule

Generalized coarea formula

If $u \in L^0(X, \mathfrak{m})$ has finite variation measure, then

$$\int_{A} \varphi \, d|Du| = \int_{\mathbb{R}} \int_{A} \varphi \, d|D\chi_{\{u>t\}}| \, dt$$

for all $\varphi \in L^0(X, \mathfrak{m})$, $\varphi \ge 0$, and $A \in \mathscr{B}(X)$.

 $(\mathsf{local})_{\mathsf{R}} \quad E \in \mathscr{T} \implies P(E;A) = 0 \text{ for all } A \in \mathscr{B}(X) \text{ with } P(E;A \cap \partial E) = 0$

Chain rule

Assume $(\text{empty})_{\mathbb{R}} + (\text{space})_{\mathbb{R}} + (\text{local})_{\mathbb{R}}$ and let $\varphi \in C^1(\mathbb{R})$ be strictly increasing. If $u \in C(X)$ has finite variation measure, then $\varphi(u)$ has finite variation measure, with

$$|D\varphi(u)| = \varphi'(u) |Du|.$$

$$\frac{\operatorname{Proof.}}{\int_{\mathbb{R}} \varphi'(s) \int_{A} d|D\chi_{\{u>s\}}| \, ds \stackrel{(\bigstar)}{=} \int_{\mathbb{R}} P(\{\varphi(u) > t\}; A) \, dt = \int_{\mathbb{R}} P(\{u > \varphi^{-1}(t)\}; A) \, dt = \int_{\mathbb{R}} \varphi'(s) \int_{A} d|D\chi_{\{u>s\}}| \, ds \stackrel{(\bigstar)}{=} \int_{\mathbb{R}} \int_{A} \varphi'(u) \, d|D\chi_{\{u>s\}}| \, ds \stackrel{(\operatorname{coarea})}{=} \int_{A} \varphi'(u) \, d|Du|$$
$$(\bigstar): \, \partial\{u>s\} \subset \{u=s\} \implies |D\chi_{\{u>s\}}| (A \cap \{u \neq s\}) = 0. \text{ QED}$$

Sobolev $W^{1,1}$ functions

Recall that

 $\mathsf{BV}(X,\mathfrak{m})=\left\{u\in L^1(X,\mathfrak{m}): u \text{ has finite variation measure}\right\}\subset BV(X,\mathfrak{m}),$ so we can define

$$\mathsf{W}^{1,1}(X,\mathfrak{m}) = \{ u \in \mathsf{BV}(X,\mathfrak{m}) : |Du| \ll \mathfrak{m} \} \subset \mathsf{BV}(X,\mathfrak{m})$$

so that

$$u \in \mathsf{W}^{1,1}(X,\mathfrak{m}) \implies |Du|(A) = \int_A |\nabla u| \, d\mathfrak{m} \quad \text{with } |\nabla u| \in L^1(X,\mathfrak{m}) \text{ the 1-slope}$$

Under $(empty)_R + (space)_R + (sub)_R + (lsc)_R$ we have

$$|\nabla(\lambda u)| = \lambda |\nabla u| \text{ for } \lambda > 0, \quad |\nabla(u+c)| = |\nabla u|, \quad |\nabla c| = 0,$$

but $W^{1,1}(X, \mathfrak{m})$ may <u>NOT</u> be closed w.r.t. sum! (recall intrinsic functions in groups) From now on we shall assume that

$$(\operatorname{sum})_{\mathbb{R}}$$
 $u, v \in \mathsf{BV}(X, \mathfrak{m}) \implies u + v \in \mathsf{BV}(X, \mathfrak{m})$

so that both $BV(X, \mathfrak{m})$ and $W^{1,1}(X, \mathfrak{m})$ are convex cones in $L^1(X, \mathfrak{m})$.

Sobolev $\mathbf{W}^{1,p}$ functions for $p \in (1,+\infty)$

p-relaxed 1-slope

We say $G \in L^p(X, \mathfrak{m})$ is *p*-relaxed 1-slope of $u \in L^p(X, \mathfrak{m})$ if

 $\exists \left\{ u_k \right\}_k \subset \mathsf{W}^{1,1}(X,\mathfrak{m}) \cap L^p(X,\mathfrak{m}) \quad \text{ and } \quad \exists \, g \in L^p(X,\mathfrak{m})$

such that

- $u_k \to u$ in $L^p(X, \mathfrak{m})$
- $|\nabla u_k| \in L^p(X, \mathfrak{m})$ and $|\nabla u_k| \rightharpoonup g$ weakly in $L^p(X, \mathfrak{m})$
- $g \leq G \mathfrak{m}$ -a.e. in X

From now on, we assume $(empty)_R + (space)_R + (sub)_R + (lsc)_R + (sum)_R$, so that

 $Slope_p(u) = \{G \in L^p(X, \mathfrak{m}) : G \text{ is a } p\text{-relaxed } 1\text{-slope of } u\}$

is a (possibly empty) convex closed subset of $L^p(X, \mathfrak{m})$ for any $u \in L^p(X, \mathfrak{m})$.

We can thus define

$$\mathsf{W}^{1,p}(X,\mathfrak{m}) = \left\{ u \in L^p(X,\mathfrak{m}) : \mathsf{Slope}_p(u) \neq \emptyset \right\}$$

and weak *p*-slope of $u \in W^{1,p}(X, \mathfrak{m})$ is $|\nabla u|_p \in \text{Slope}_p(u)$ with minimal L^p norm.

Strong approximation, $W_0^{1,p}(\Omega, \mathfrak{m})$ and the first *p*-eigenvalue

From now on $\Omega \subset X$ is a non-empty open set.

Strong approximation

If $u \in W^{1,p}(X, \mathfrak{m})$ then $\exists \{u_k\}_k \subset W^{1,1}(X, \mathfrak{m}) \cap L^p(X, \mathfrak{m})$ such that

 $|\nabla u_k| \in L^p(X, \mathfrak{m})$ and $u_k \to u$, $|\nabla u_k| \to |\nabla u|_p$ strongly in $L^p(X, \mathfrak{m})$.

The space $W_0^{1,p}(\Omega, \mathfrak{m})$

We say that $u \in W_0^{1,p}(\Omega, \mathfrak{m})$ if $\exists \{u_k\}_k \subset W^{1,1}(X, \mathfrak{m}) \cap L^p(X, \mathfrak{m})$ such that

- $|\nabla u_k| \in L^p(X, \mathfrak{m})$
- $u_k \to u$ and $|\nabla u_k| \to |\nabla u|_p$ strongly in $L^p(X, \mathfrak{m})$
- $u_k \in C(X)$ with supp $u_k \subset \overline{\Omega}$

We say Ω is *p*-regular if $W_0^{1,p}(\Omega, \mathfrak{m}) \neq \{0\}$.

The first *p*-eigenvalue of a *p*-regular Ω is

$$\lambda_{1,p}(\Omega) = \inf \left\{ \frac{\||\nabla u|_p\|_p^p}{\|u\|_p^p} : u \in \mathsf{W}_0^{1,p}(\Omega,\mathfrak{m}), \ \|u\|_p > 0 \right\} \in [0,+\infty).$$

Link with the first p-eigenvalue

From now on $\Omega \subset X$ is a non-empty open *p*-regular set.

Link with first p-eigenvalue

$$\lambda_{1,p}(\Omega) \ge \left(\frac{\lambda_{1,1}(\Omega)}{p}\right)^p \quad \text{and } \lambda_{1,1}(\Omega) = h(\Omega) \text{ if } \Omega \text{ is admissible and } P(\,\cdot\,;X) \text{ is (sym)}$$

<u>Proof.</u> [Cheeger], [Lefton-Wei], [Kawohl-Fridman] Let $u \in W_0^{1,p}(\Omega, \mathfrak{m})$ with $||u||_p > 0$. Approximation: $\exists \{u_k\}_k \subset W^{1,1}(X, \mathfrak{m}) \cap L^p(X, \mathfrak{m})$ with $|\nabla u_k| \in L^p(X, \mathfrak{m})$ such that $u_k \to u$, $|\nabla u_k| \to |\nabla u|_p$ strongly in $L^p(X, \mathfrak{m})$, and $u_k \in C(X)$, $\operatorname{supp} u_k \subset \overline{\Omega}$. Let $\varphi(r) = r|r|^{p-1}$, $r \in \mathbb{R}$: $\varphi \in C^1(\mathbb{R})$ strictly increasing, $\varphi'(r) = p|r|^{p-1}$, $r \in \mathbb{R}$. Chain rule: $\varphi(u_k) \in W^{1,1}(X, \mathfrak{m}) \cap C(X)$ with $|\nabla \varphi(u_k)| = p|u_k|^{p-1}||\nabla u_k|$. Since $\operatorname{supp} \varphi(u_k) \subset \overline{\Omega}$, we get $\varphi(u_k) \in BV_0(\Omega, \mathfrak{m})$, with $\operatorname{Var}(\varphi(u_k); X) = |||\nabla \varphi(u_k)|||_1 = p \int_X |u_k|^{p-1}||\nabla u_k| d\mathfrak{m} \leq p||u_k||_p^{p-1}|||\nabla u_k||_p$.

Therefore

$$\lambda_{1,1}(\Omega) \le \frac{\operatorname{Var}(\varphi(u_k); X)}{\|\varphi(u_k)\|_1} \le \frac{p\|u_k\|_p^{p-1}\||\nabla u_k\|\|_p}{\|u_k\|_p^p} = p\frac{\||\nabla u_k\|\|_p}{\|u_k\|_p}$$

and the conclusion follows letting $k \to +\infty$ and then taking the inf. QED

Application # I: Distributional Fractional Variation (Comi-S.) [1/2]

Let $\Omega \subset \mathbb{R}^n$ be a non-empty open set.

For $s \in (0, 1)$ and $p \in [1, +\infty]$, the distributional *s*-variation of $u \in L^p(\mathbb{R}^n)$ in Ω is $|D^s u|(\Omega) = \sup \left\{ \int_{\mathbb{R}^n} u \operatorname{div}^s \varphi \, dx : \varphi \in C_c^\infty(\mathbb{R}^n; \mathbb{R}^n), \ \|\varphi\|_\infty \le 1, \ \operatorname{supp} \varphi \Subset \Omega \right\},$

where the $s\text{-}{\rm fractional}$ divergence of φ is given by

$$\operatorname{div}^{s}\varphi(x) = c_{n,s} \int_{\mathbb{R}^{n}} \frac{(y-x) \cdot (\varphi(y) - \varphi(x))}{|y-x|^{n+s+1}} \, dy, \quad x \in \mathbb{R}^{n}.$$

We let $P(E; A) = |D^s \chi_E|(A)$, $Var(u; A) = |D^s u|(A)$ for any open $A \subset \mathbb{R}^n$ and

$$BV^s(\Omega) = \left\{ u \in L^1(\mathbb{R}^n) : |D^s u|(\Omega) < +\infty \right\}.$$

Distributional meaning: $u \in L^1(\mathbb{R}^n)$ is in $BV^s(\Omega) \iff \exists D^s u \in \mathscr{M}(\Omega; \mathbb{R}^n)$ s.t.

$$\int_{\mathbb{R}^n} u \operatorname{div}^s \varphi \, dx = -\int_{\Omega} \varphi \cdot d\mathbf{D}^s u \quad \text{ for all } \varphi \in C^\infty_c(\Omega; \mathbb{R}^n).$$

Fractional comparison: $W^{s,1}(\mathbb{R}^n) \subsetneq BV^s(\mathbb{R}^n)$ and $|D^s\chi_E|(\Omega) \le c_{n,s}P_s(E;\Omega)$.

Application # I: Distributional Fractional Variation (Comi-S.) [2/2]

Properties [Comi-S.]

- $|D^s \cdot|$ is translation invariant and (n-s)-homogeneous
- $|D^s\chi_{\emptyset}| = |D^s\chi_{\mathbb{R}^n}| = 0, |D^s\chi_{\mathbb{R}^n\setminus E}| = |D^s\chi_E|$
- $|D^s u|(\mathbb{R}^n) \leq \liminf_k |D^s u_k|(\mathbb{R}^n) < +\infty$ for $u_k \to u$ in $L^1(\mathbb{R}^n)$
- $\{u_k\}_k \subset BV^s(\mathbb{R}^n)$ bounded $\implies \exists \{u_{k_h}\}_h L^1_{loc}$ -converging to $u \in BV^s(\mathbb{R}^n)$
- $BV^s(\mathbb{R}^n) \subset L^{\frac{n}{n-s}}(\mathbb{R}^n)$ with $\|u\|_{L^{\frac{n}{n-s}}} \leq c_{n,s}|D^s u|(\mathbb{R}^n)$ for $n \geq 2$

Bad news [Comi-S.]

- locality fails: $\exists \chi_E \in BV(\mathbb{R}^n)$ such that $\operatorname{supp} |D^s \chi_E| \not\subset \partial E$ (but $\subset \mathscr{F}^s E$)
- coarea formula fails: $\exists u \in BV^s(\mathbb{R}^n)$ with $t \mapsto |D^s\chi_{\{u>t\}}|(\mathbb{R}^n) \notin L^1(\mathbb{R})$
- submodularity of perimeter is unknown

Applications

- \blacktriangleright Cheeger sets exist in any open set $\Omega \subset \mathbb{R}^n$ with $|\Omega| < +\infty$
- ▶ CMC sets in Ω exist for $\kappa \ge h(\Omega)$, being Cheeger sets for $\kappa = h(\Omega)$
- ▶ $\lambda_{1,1}(\Omega) \leq h(\Omega)$, but the inequality may be strict

Application #2: Non-local Variation (Bessas-S.) [1/3]

Let $K \colon \mathbb{R}^n \to [0, +\infty]$ be a kernel.

The non-local K-variation of $u \in L^0(\mathbb{R}^n)$ is

$$[u]_{K} = \frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |u(x) - u(y)| K(x-y) \, dx \, dy$$

so that $BV^K(\mathbb{R}^n) = \{ u \in L^1(\mathbb{R}^n) : [u]_K < +\infty \}$. Notation: $P_K(E) = [\chi_E]_K$.

Examples

- $K \in L^1(\mathbb{R}^n) \implies BV^K(\mathbb{R}^n) = L^1(\mathbb{R}^n)$ [Mazón-Rossi-Toledo]
- $K = |\cdot|^{-n-s} \implies BV^K(\mathbb{R}^n) = W^{s,1}(\mathbb{R}^n)$ [Caffarelli-Roquejoffre-Savin]

We focus on the non-integrable case $K \notin L^1(\mathbb{R}^n)$ only.

Properties

- $[\cdot]_K$ is translation invariant, $P_K(\emptyset) = P_K(\mathbb{R}^n) = 0$, $P_K(\mathbb{R}^n \setminus E) = P_K(E)$
- $u_k \to u$ in $L^1_{loc}(\mathbb{R}^n) \implies [u]_K \le \liminf_k [u_k]_K$ (Fatou)
- $[u \wedge v]_K + [u \vee v]_K \le [u]_K + [v]_K$

Application #2: Non-local Variation (Bessas-S.) [2/3]

Isoperimetric inequality [Cesaroni-Novaga], [De Luca-Novaga-Ponsiglione]

K radially symmetric decreasing $\implies P_K(E) \ge P_K(B^{|E|})$, with $|B^{|E|}| = |E|$ (with equality $\iff E$ is a ball, if K strictly decreasing in a ngbh of the origin) Note that $\lim_{v \to 0^+} P_K(B^v)/v = +\infty$ [Cesaroni-Novaga].

Compactness [Bessas-S.]

 $K \notin L^1(\mathbb{R}^n), \quad K \in L^1(\mathbb{R}^n \setminus B_r) \text{ for all } r > 0$

 $\{u_k\}_k \subset BV^K(\mathbb{R}^n) \text{ bounded } \implies \exists \{u_{k_h}\}_h \ L^1_{\text{loc}} \text{-converging to } u \in BV^K(\mathbb{R}^n)$

Application

- \blacktriangleright Cheeger sets exist in any open set $\Omega \subset \mathbb{R}^n$ with $|\Omega| < +\infty$
- CMC sets in Ω exist for $\kappa \ge h(\Omega)$, being Cheeger sets for $\kappa = h(\Omega)$
- ► $\lambda_{1,1}(\Omega) = h(\Omega)$, with characterization of minimizers

Application #2: Non-local Variation (Bessas-S.) [3/3]

Assume q-decreasing property: $|x| \leq |y| \implies K(x)|x|^q \geq K(y)|y|^q$ for $q \geq 0$.

Monotonicity [Bessas-S.]

$$0 < r \le R < +\infty \implies \frac{P_K(rE)}{|rE|^{2-\frac{q}{n}}} \ge \frac{P_K(RE)}{|RE|^{2-\frac{q}{n}}}$$

In particular, $v \mapsto P_K(B^v)v^{\frac{q}{n}-2}$ is decreasing (take E = B).

Isoperimetric inequality for small volumes [Bessas-S.]

$$K \text{ radial and } q < n+1: \quad |E| \le |B| \implies \frac{P_K(E)}{|E|^{2-\frac{q}{n}}} \ge \frac{P_K(B)}{|B|^{2-\frac{q}{n}}}$$

A priori estimates [Bessas-S.]

Assume K radial and $q \in (n, n+1)$.

•
$$E \subset \Omega$$
 Cheeger set $\implies |E|^{\frac{q}{n}-1} \ge \frac{P_K(B^{|\Omega|})}{|\Omega|^{2-\frac{q}{n}}h(\Omega)}$

• $u \in BV_0^K(\Omega)$ eigenfunction $\implies \|u\|_{L^{\infty}(\Omega)} \le \left(\frac{|\Omega|^{2-\frac{q}{n}}h(\Omega)}{P_K(B^{|\Omega|})}\right)^{\frac{q}{q-n}} \|u\|_{L^1(\Omega)}$

-101

THANK YOU FOR YOUR ATTENTION!

Slides available via giorgio.stefani.math@gmail.com or giorgiostefani.weebly.com.

- References -

► V. Franceschi, A. Pinamonti, G. Saracco and G. Stefani, The Cheeger problem in abstract measure spaces, available at <u>arXiv:2207.00482</u>.

► G. E. Comi and G. Stefani, project on Distributional fractional spaces and fractional variation (6 papers).

 \blacktriangleright K. Bessas and G. Stefani, Non-local BV functions and a denoising model with L^1 fidelity, forthcoming.