Bakry-Émery curvature condition and entropic inequalities on metric-measure groups

Giorgio Stefani

SISSA

AMS-EMS-SMF International Meeting 2022
Special Session in Sub-Riemannian Geometry
Grenoble, 2 I July 2022
G. Stefani, Generalized Bakry-Émery curvature condition and equivalent entropic inequalities in groups, J. Geom. Anal. 32 (2022), no. 4, 136. Preprint available at arXiv:2008.13731.

Bakry-Émery curvature-dimension condition

Let (\mathbb{M}, g) be a smooth Riemannian manifold with Laplace-Beltrami operator Δ. The heat flow $f_{t}=\mathrm{P}_{t} f$ starting from a datum f is associated to $\partial_{t}-\Delta$.
Define $\varphi(s)=\mathrm{P}_{s} \Gamma\left(\mathrm{P}_{t-s} f\right)$ for $s \in[0, t]$ and $t>0$. One can check that

$$
\varphi^{\prime}(s)=2 \mathrm{P}_{s} \Gamma_{2}\left(\mathrm{P}_{t-s} f\right)
$$

where $\Gamma(f, g)=\langle\nabla f, \nabla g\rangle_{g}$ and $\Gamma_{2}(f, g)=\frac{1}{2}(\Delta \Gamma(f, g)-\Gamma(\Delta f, g)-\Gamma(f, \Delta g))$.
Note that $\Gamma_{2}(f)=\|\operatorname{Hess} f\|_{2}^{2}+\operatorname{Ric}(\nabla f, \nabla f)$, where $\operatorname{Ric}(\cdot, \cdot)$ is the Riccitensor.
If $\operatorname{Ric}(v, v) \geq K|v|_{g}^{2}$ for some $K \in \mathbb{R}$, then $\varphi^{\prime}(s) \geq 2 K \varphi(s)$ and thus

$$
\text { Ric } \geq K \Longrightarrow \Gamma\left(\mathrm{P}_{t} f\right) \leq e^{-2 K t} \mathrm{P}_{t} \Gamma(f)
$$

the Bakry-Émery-Ledoux pointwise gradient estimate for the heat flow. To consider $N=\operatorname{dim} \mathbb{M}$ observe that $\|H e s s f\|_{2}^{2} \geq \frac{1}{N}(\Delta f)^{2}$ [Wang, 20II]. Surprisingly, we have an equivalence:

$$
\mathrm{CD}(K, N): \text { Ric } \geq K, \operatorname{dim} \mathbb{M} \leq N \Longleftrightarrow \Gamma_{2}(f) \geq \frac{1}{N}(\Delta f)^{2}+K \Gamma(f),
$$

the Bakry-Émery curvature-dimension inequality (we will consider $N=\infty$ only).

The Wasserstein space

 We see (\mathbb{M}, g) as a metric space (X, d) with $X=\mathbb{M}$ and $\mathrm{d}=\mathrm{d}_{\mathrm{g}}$.Theorem (von Renesse - Sturm, 2005)

$$
\text { Ric } \geq K \Longleftrightarrow W_{2}\left(\mathrm{P}_{t} \mu, \mathrm{P}_{t} \nu\right) \leq e^{-K t} W_{2}(\mu, \nu) \text { for all } \mu, \nu \in \mathscr{P}_{2}(\mathbb{M})
$$

Here $\left(\mathscr{P}_{2}(X), W_{2}\right)$ is the Wasserstein metric space, where

$$
\mathscr{P}_{2}(X)=\left\{\mu \in \mathscr{P}(X): \int_{X} \mathrm{~d}\left(x, x_{0}\right)^{2} \mathrm{~d} \mu(x)<+\infty, x_{0} \in X\right\}
$$

and

$$
W_{2}^{2}(\mu, \nu)=\inf \left\{\int_{X \times X} \mathrm{~d}^{2}(x, y) \mathrm{d} \pi: \pi(x, y) \in \operatorname{Plan}(\mu, \nu)\right\},
$$

with

$$
\operatorname{Plan}(\mu, \nu)=\left\{\pi \in \mathscr{P}(X \times X):\left(p_{1}\right)_{\#} \pi=\mu,\left(p_{2}\right)_{\#} \pi=\nu\right\} .
$$

Important fact:

$$
(X, \mathrm{~d}) \text { Polish (geodesic) } \Longrightarrow\left(\mathscr{P}_{2}(X), W_{2}\right) \text { Polish (geodesic). }
$$

The Boltzmann entropy

As before, we see $(X, \mathrm{~d}, \mathfrak{m})=\left(\mathbb{M}, g, V \mathrm{ll}_{\mathrm{g}}\right)$ as a metric-measure space.
Theorem (von Renesse - Sturm, 2005)
$\operatorname{Ric} \geq K \Longleftrightarrow \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{s}\right) \leq(1-s) \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{1}\right)-\frac{K}{2} s(1-s) W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)$
where $s \mapsto \mu_{s}$ is any (1-speed) W_{2}-geodesic joining $\mu_{0}, \mu_{1} \in \operatorname{Dom}\left(\right.$ Ent $\left._{\mathfrak{m}}\right)$.
Here $\mathrm{Ent}_{\mathfrak{m}}: \mathscr{P}_{2}(X) \rightarrow(-\infty,+\infty]$ is the (Boltzmann) entropy

$$
\operatorname{Ent}_{\mathfrak{m}}(\mu)=\int_{X} \varrho \log \varrho \mathrm{dm}
$$

for $\mu=\varrho \mathfrak{m} \in \mathscr{P}_{2}(X)$, with $\operatorname{Ent}_{\mathfrak{m}}(\mu)=+\infty$ if $\mu k \mathfrak{m}$.
NOTE: we want $\operatorname{Ent}(\mu)>-\infty$ for all $\mu \in \mathscr{P}_{2}(X)$, but this is OK whenever

$$
\exists x_{0} \in X \quad \exists A, B>0 \quad: \quad \mathfrak{m}\left(B_{r}\left(x_{0}\right)\right) \leq A \exp \left(B r^{2}\right) \quad \text { (exp.ball) }
$$

Bishop volume comparison: $(X, \mathrm{~d}, \mathfrak{m})=(\mathbb{M}, \mathrm{g}$, Volg $)$ with $\mathrm{Ric} \geq K \Longrightarrow$ (exp.ball).

To be or not to be... smooth: the birth of $\mathrm{CD}(K, \infty)$ spaces
On a smooth Riemannian manifold (\mathbb{M}, g) we know that
(I) Ric $\geq K$
(2) $\Gamma\left(\mathrm{P}_{t}\right) \leq e^{-2 K t} \mathrm{P}_{t} \Gamma$
(3) $W_{2}\left(\mathrm{P}_{t}, \mathrm{P}_{t}\right) \leq e^{-K t} W_{2}$
(4) $\mathrm{Ent}_{\mathfrak{m}}$ is W_{2}-geodesic K-convex are equivalent, but (4) only need d and \mathfrak{m}, not the smoothness of $(\mathbb{M}, g$), hence making sense in metric-measure spaces.

Lott - Villani, Sturm

Definition: $(X, \mathrm{~d}, \mathfrak{m})$ is a $\mathrm{CD}(K, \infty)$ space if $\mathrm{Ent}_{\mathfrak{m}}$ is W_{2}-geodesic K-convex
Natural questions:
What about (2) and (3)?
Can the heat flow be defined in a metric-measure space?

The Cheeger energy

In a metric-measure space $(X, \mathrm{~d}, \mathfrak{m})$, the Cheeger energy is

$$
\operatorname{Ch}(f)=\inf \left\{\liminf _{n} \frac{1}{2} \int_{X}\left|\mathrm{D} f_{n}\right|^{2} \mathrm{dm}: f_{n} \rightarrow f \text { in } L^{2}(X, \mathfrak{m}), f_{n} \in \operatorname{Lip}(X)\right\}
$$

where $|D f|(x)=\limsup _{y \rightarrow x} \frac{|f(y)-f(x)|}{\mathrm{d}(x, y)}$ stands for the slope of $f: X \rightarrow \mathbb{R}$.
Ch is convex, l.s.c. and its domain $\mathrm{W}^{1,2}(X, \mathrm{~d}, \mathfrak{m})$ is dense in $L^{2}(X, \mathfrak{m})$
We can define the heat flow as the (Hilbertian) gradient flow of Ch in $L^{2}(X, \mathfrak{m})$:

$$
\mathrm{P}_{t} f \underset{t \rightarrow 0^{+}}{\longrightarrow} f \text { in } \mathrm{L}^{2}(X, \mathfrak{m}) \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{P}_{t} f \in-\partial^{-} \mathrm{Ch}\left(\mathrm{P}_{t} f\right) \text { for a.e. } t>0 .
$$

The Laplacian $-\Delta_{\mathrm{d}, \mathfrak{m}} f \in \partial^{-} \mathrm{Ch}(f)$ is the element of minimal $\left\llcorner^{2}(X, \mathfrak{m})\right.$-norm. CAUTION: $W^{1,2}(X, \mathrm{~d}, \mathfrak{m})$ with $\|\cdot\|_{W^{1}, 2}=\sqrt{\|\cdot\|_{L^{2}}^{2}+\mathrm{Ch}(\cdot)}$ may be NOT Hilbert!
Example: consider $\left(\mathbb{R}^{n},\|\cdot\|_{p}, \mathscr{L}^{n}\right)$ for $p \neq 2$.

The weak gradient

Any $f \in \mathcal{W}^{1,2}(X, \mathrm{~d}, \mathfrak{m})$ has a (unique) weak gradient $|\mathrm{D} f|_{w} \in \mathrm{~L}^{2}(X, \mathfrak{m})$ such that

$$
\mathrm{Ch}(f)=\frac{1}{2} \int_{X}|\mathrm{D} f|_{w}^{2} \mathrm{dm} .
$$

The weak gradient $|\mathrm{Df}|_{w}$ behaves like the 'modulus of the gradient' and one can develop Calculus rules in a non-smooth setting.

We say that Ch is quadratic if it satisfies the parallelogram law

$$
\mathrm{Ch}(f+g)+\mathrm{Ch}(f-g)=2 \mathrm{Ch}(f)+2 \mathrm{Ch}(g) .
$$

We assume that Ch is quadratic, so that
$W^{1,2}(X, \mathrm{~d}, \mathfrak{m})$ is Hilbert, $\quad \mathrm{P}_{t}$ is linear, $\quad \Gamma(f)=|\mathrm{D} f|_{w}^{2}$ is quadratic.
By polarization, we can define

$$
\Gamma(f, g)=|\mathrm{D}(f+g)|_{w}^{2}-|\mathrm{D} f|_{w}^{2}-|\mathrm{D} g|_{w}^{2}
$$

as the 'scalar product of gradients'.

The bright side of $\mathrm{RCD}(K, \infty)$ spaces
DEA: reinforce CD restricting to Riemannian-like metric-measure spaces only.

Ambrosio - Gigli - Savaré

Definition: $(X, \mathrm{~d}, \mathfrak{m})$ is $\mathrm{RCD}(K, \infty)$ if it is $\mathrm{CD}(K, \infty)$ and Ch is quadratic

Theorem (many people...)
Assume ($X, \mathrm{~d}, \mathfrak{m}$) has a quadratic Ch. TFAE:
$\mathrm{BE}(K, \infty): \Gamma\left(\mathrm{P}_{t} f\right) \leq e^{-2 K t} \mathrm{P}_{t} \Gamma(f)$
Kuwada: $W_{2}\left(\mathrm{P}_{t} \mu, \mathrm{P}_{t} \nu\right) \leq e^{-K t} W_{2}(\mu, \nu)$
$\mathrm{CD}(K, \infty): \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{s}\right) \leq(1-s) \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{1}\right)-\frac{K}{2} s(1-s) W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)$
$\mathrm{EVI}_{K}: \frac{\mathrm{d}}{\mathrm{d} t} \frac{W_{2}^{2}\left(\mathrm{P}_{t} \mu, \nu\right)}{2}+\frac{K}{2} W_{2}^{2}\left(\mathrm{P}_{t} \mu, \nu\right)+\operatorname{Ent}\left(\mathrm{P}_{t} \mu\right) \leq \operatorname{Ent}(\nu)$
Here EVI_{K} stands for Evolution Variational Inequality and encodes the fact that the heat flow is the metric gradient flow of the entropy in the Wasserstein space.

The dark side of non-CD (K, ∞) spaces, part I: Carnot groups A Carnot group \mathbb{G} is a connected, simply connected, stratified Lie group with

$$
\operatorname{Lie}(\mathbb{G})=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{\kappa}, \quad V_{i}=\left[V_{1}, V_{i-1}\right], \quad\left[V_{1}, V_{\kappa}\right]=\{0\} .
$$

The horizontal directions $V_{1}=\operatorname{span}\left\{X_{1}, \ldots, X_{m}\right\}, m \in \mathbb{N}$, provide

$$
\nabla_{\mathbb{G}} f=\sum_{j=1}^{m}\left(X_{j} f\right) X_{j} \quad \text { and } \quad \Delta_{\mathbb{G}}=\sum_{j=1}^{m} X_{j}^{2} .
$$

One can identify $\mathbb{G} \sim\left(\mathbb{R}^{n}, \bullet\right)$ with Haar measure the Lebesgue measure \mathscr{L}^{n}. We want to move only along V_{1}, so the Carnot-Carathéodory distance is

$$
\mathrm{d}_{\mathrm{CC}}(x, y)=\inf \left\{\int_{0}^{1}\left\|\dot{\gamma}_{s}\right\|_{\mathbb{G}} d s: \gamma_{0}=x, \gamma_{1}=y, \dot{\gamma}_{t} \in V_{1}\right\} .
$$

The space $\left(\mathbb{G}, \mathrm{d}_{\mathrm{cc}}, \mathscr{L}^{n}\right)$ is Polish, geodesic and $\mathscr{L}^{n}\left(\mathrm{~B}_{\mathrm{CC}}(x, r)\right)=C r^{Q}, Q \in \mathbb{N}$.
Theorem (Ambrosio - S., 20 18)
The metric-measure space $\left(\mathbb{G}, \mathrm{d}_{\mathrm{CC}}, \mathscr{L}^{n}\right)$ is NOT $\mathrm{CD}(K, \infty)$!
The case of the Heisenberg group $\mathbb{G}=\mathbb{H}^{n}$ was known since [Juillet, 2014].

The dark side of non-CD (K, ∞) spaces, part II: the $\mathbb{S U}(2)$ group

 $\mathbb{S U}(2)=$ Lie group of 2×2 complex unitary matrices with determinant 1 . Lie algebra $\mathfrak{s u}(2)=2 \times 2$ complex unitary skew-Hermitian matrices with trace 0 . A basis of $\mathfrak{s u}(2)$ is given by the Pauli matrices$$
X=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad i \in \mathbb{C},
$$

satisfying the relations

$$
[X, Y]=2 Z, \quad[Y, Z]=2 X, \quad[Z, X]=2 Y
$$

Similarly as before, the horizontal generators X, Y provide $\overline{\mathrm{d}_{\mathrm{CC}}}$ and

$$
\nabla_{\mathbb{S U}(2)} f=(X f) X+(Y f) Y \quad \text { and } \quad \Delta_{\mathrm{SU}(2)}=X^{2}+Y^{2} .
$$

Using the cylindric coordinates (for $r \in\left[0, \frac{\pi}{2}\right), \vartheta \in[0,2 \pi]$ and $\zeta \in[-\pi, \pi]$)

$$
(r, \vartheta, z) \mapsto \exp (r \cos \vartheta X+r \sin \vartheta Y) \exp (\zeta Z)=\left(\begin{array}{c}
\left.e^{i \zeta \cos r} \begin{array}{c}
i(\vartheta-\zeta) \\
-e^{-i(\vartheta-\zeta)} \sin r \\
e^{-i \zeta} \cos r
\end{array}\right), ~, ~
\end{array}\right.
$$

the Haar measure $\mathfrak{m} \in \mathscr{P}(\mathbb{S U}(2))$ can be written as $d \mathfrak{m}=\frac{1}{4 \pi^{2}} \sin (2 r) \mathrm{d} r \mathrm{~d} \vartheta \mathrm{~d} \zeta$.
The space $\left(\mathbb{S U}(2), \mathrm{d}_{\mathrm{Cc}}, \mathfrak{m}\right)$ is Polish, geodesic and compact.

Why Carnot groups and $\mathbb{S U}(2)$ are interesting?

Theorem (Melcher, 2008)

Let \mathbb{G} be a Carnot group. There exists $C_{\mathbb{G}} \geq 1$ such that $\Gamma^{\mathbb{G}}\left(\mathrm{P}_{t} f\right) \leq C_{\mathbb{G}}^{2} \mathrm{P}_{t} \Gamma^{\mathbb{G}}(f)$.
This is much weaker than usual BE , because we lose information at $t=0$!
Remark: $C_{\mathbb{G}}=1 \Longleftrightarrow \mathbb{G}$ is commutative [Ambrosio-S., 20 I8].
Theorem (Baudoin - Bonnefont, 2008)
There exists $C_{\mathbb{S U}(2)} \geq \sqrt{2}$ such that $\Gamma^{\mathbb{S U}(2)}\left(\mathrm{P}_{t} f\right) \leq C_{\mathbb{S U}(2)}^{2} e^{-4 t} \mathrm{P}_{t} \Gamma^{\operatorname{SU}(2)}(f)$.

QUESTION: can we extend the equivalence

$$
\mathrm{BE} \Longleftrightarrow \text { Kuwada } \Longleftrightarrow \mathrm{CD} \Longleftrightarrow \mathrm{EVI}
$$

also to Carnot groups and $\mathbb{S U}(2)$?
NOTE: [Kuwada, 2009] already gives $\mathrm{BE} \Longleftrightarrow W_{2}$-contraction.

We do not need smoothness: admissible metric-measure groups

Assume ($X, \mathrm{~d}, \mathfrak{m}$) has Ch quadratic.

Definition (Admissible group)
($X, \mathrm{~d}, \mathfrak{m}$) is an admissible metric-measure group if:

- the metric space ($X, \mathrm{~d}$) is locally compact;
- the set X is a topological group, i.e. $(x, y) \mapsto x y$ and $x \mapsto x^{-1}$ are continuous;
- d is left-invariant, i.e. $\mathrm{d}(z x, z y)=\mathrm{d}(x, y)$ for all $x, y, z \in X$;
- \mathfrak{m} is a left-invariant Haar measure, i.e. \mathfrak{m} is a Radon measure such that $\mathfrak{m}(x E)=\mathfrak{m}(E)$ for all $x \in X$ and all Borel set $E \subset X$;
- X is unimodular, i.e. \mathfrak{m} is also right-invariant.

REMARK: Carnot groups and $\mathbb{S U}(2)$ ARE admissible metric-measure groups.

Main result

Let $\mathrm{c}:[0,+\infty) \rightarrow(0,+\infty)$ be such that $\mathrm{c}, \mathrm{c}^{-1} \in \mathrm{~L}^{\infty}([0, T])$ for all $T>0$.
IDEA: c is a 'curvature function' and generalizes the usual $t \mapsto e^{-K t}$.
Examples: $\mathrm{c}(t) \equiv C_{\mathbb{G}}$ for Carnot groups and $\mathrm{c}(t)=C_{\mathbb{S U}(2)} e^{-2 t}$ for $\mathbb{S U}(2)$.
Define $\mathrm{R}(a, b)=\frac{1}{b-a} \int_{a}^{b} \mathrm{c}^{-2}(s) \mathrm{d} s$ for $0 \leq a \leq b$.

Theorem (S., 2020)

Let $(X, \mathrm{~d}, \mathfrak{m})$ be an admissible group + some technical hypotheses. TFAE:
$\mathrm{BE}_{w}: \Gamma\left(\mathrm{P}_{t} f\right) \leq \mathrm{c}^{2}(t) \mathrm{P}_{t} \Gamma(f)$
Kuwada: $W_{2}\left(\mathrm{P}_{t} \mu, \mathrm{P}_{t} \nu\right) \leq \mathrm{c}(t) W_{2}(\mu, \nu)$
$\mathrm{CD}_{w}: \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t+h} \mu_{s}\right) \leq(1-s) \operatorname{Ent}_{m}\left(\mathrm{P}_{t} \mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t} \mu_{1}\right)$

$$
+\frac{s(1-s)}{2 h}\left(\frac{1}{\mathrm{R}(t, t+h)} W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)-W_{2}^{2}\left(\mathrm{P}_{t} \mu_{0}, \mathrm{P}_{t} \mu_{1}\right)\right)
$$

for $t \geq 0$ and $h>0$, with $s \mapsto \mu_{s}$ a (1-speed) W_{2}-geodesic
$\mathrm{EVI}_{w}: W_{2}^{2}\left(\mathrm{P}_{t_{1}} \mu_{1}, \mathrm{P}_{t_{0}} \mu_{0}\right)-\frac{1}{\mathrm{R}\left(t_{0}, t_{1}\right)} W_{2}^{2}\left(\mu_{1}, \mu_{0}\right)$

$$
\leq 2\left(t_{1}-t_{0}\right)\left(\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{0}} \mu_{0}\right)-\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{1}} \mu_{1}\right)\right) \text { for } 0 \leq t_{0} \leq t_{1}
$$

Comments

$$
\begin{aligned}
\mathrm{CD}_{w}: & \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t+h} \mu_{s}\right) \leq(1-s) \operatorname{Ent}_{m}\left(\mathrm{P}_{t} \mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t} \mu_{1}\right) \\
& \quad+\frac{s(1-s)}{2 h}\left(\frac{1}{R(t, t+h)} W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)-W_{2}^{2}\left(\mathrm{P}_{t} \mu_{0}, \mathrm{P}_{t} \mu_{1}\right)\right) \\
& \text { for } t \geq 0 \text { and } h>0 \\
\mathrm{EVI}_{w}: & W_{2}^{2}\left(\mathrm{P}_{t_{1}} \mu_{1}, \mathrm{P}_{t_{0}} \mu_{0}\right)-\frac{W_{2}^{2}\left(\mu_{1}, \mu_{0}\right)}{R\left(t_{0}, t_{1}\right)} \leq 2\left(t_{1}-t_{0}\right)\left(\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{0}} \mu_{0}\right)-\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{1}} \mu_{1}\right)\right) \\
& \text { for } 0 \leq t_{0} \leq t_{1}
\end{aligned}
$$

1. The equivalence $\mathrm{BE}_{w} \Longleftrightarrow$ Kuwada is known, see [Kuwada, 2009] and [Ambrosio - Gigli - Savaré, 20 15], but we (re)do the proof because of some technical issues.
2. If $t=0$ in CD_{w}, then $\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{h} \mu_{s}\right) \leq(1-s) \operatorname{Ent}_{m}\left(\mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{1}\right)$

$$
+\frac{A(h)}{2} s(1-s) W_{2}^{2}\left(\mu_{0}, \mu_{1}\right) \text { with } A(h)=\frac{\mathrm{R}(0, h)^{-1}-1}{h} \text { for } h>0 .
$$

3. $\mathrm{CD}_{w} \Longrightarrow$ Kuwada is easy: multiply by $h>0$ and then send $h \rightarrow 0^{+}$.
4. $\mathrm{EVI}_{w} \Longrightarrow \mathrm{CD}_{w}$ follows from a general argument, see [Daneri - Savaré, 2008].
5. We only need to prove $\mathrm{BE}_{w} \Longrightarrow \mathrm{EVI}_{w}$. The proof is an adaptation of [Ambrosio - Gigli - Savaré, 20 I5] and [Erbar - Kuwada - Sturm, 20 15].

Other comments and research directions

$$
\begin{aligned}
& \mathrm{CD}_{w}: \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t+h} \mu_{s}\right) \leq(1-s) \operatorname{Ent}_{m}\left(\mathrm{P}_{t} \mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t} \mu_{1}\right) \\
& \quad \quad+\frac{s(1-s)}{2 h}\left(\frac{1}{R(t, t+h)} W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)-W_{2}^{2}\left(\mathrm{P}_{t} \mu_{0}, \mathrm{P}_{t} \mu_{1}\right)\right) \\
& \quad \text { for } t \geq 0 \text { and } h>0 \\
& \mathrm{EVI}_{w}: W_{2}^{2}\left(\mathrm{P}_{t_{1}} \mu_{1}, \mathrm{P}_{t_{0}} \mu_{0}\right)-\frac{W_{2}^{2}\left(\mu_{1}, \mu_{0}\right)}{R\left(t_{0}, t_{1}\right)} \leq 2\left(t_{1}-t_{0}\right)\left(\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{0}} \mu_{0}\right)-\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{1}} \mu_{1}\right)\right) \\
& \quad \text { for } 0 \leq t_{0} \leq t_{1}
\end{aligned}
$$

6. We need the group structure of X to exploit the de-singularization property of the convolution: $\varrho \star \mu \ll \mathfrak{m}$. Can we avoid this assumption? Example: metric graphs.
Note: $\mathrm{BE}_{w} \Longrightarrow \mathrm{P}_{t} \mu \ll \mathfrak{m}$, but the W_{2}-metric velocity of $s \mapsto \mu_{s}^{t}=\mathrm{P}_{t} \mu_{s}$ cannot be related to the one of $s \mapsto \mu_{s}$ if $\mathrm{c}(0+)>1$. Examples: Carnot groups and $\mathbb{S U}(2)$!
7. Consider a sub-Riemannian manifold \mathbb{M} (possibly, without a group structure). Is there a BE_{w} inequality also encoding information about the dimension of \mathbb{M} ?
8. $\mathrm{RCD}(K, \infty)$ and EVI_{K} imply several nice properties about ($X, \mathrm{~d}, \mathfrak{m}$) (MCP, gradient flows, m-GH stability....). What can we deduce from RCD_{w} and EVI_{w} ? 9. W_{2}-contractions are also known for Markovian diffusion semigroup associated to $L=\Delta+Z$ with $Z \in C^{1}$ on (\mathbb{M}, g). Can we extend the result to this case?

THANK YOU FOR YOUR ATTENTION!

G. Stefani, Generalized Bakry-Émery curvature condition and equivalent entropic inequalities in groups, J. Geom. Anal. 32 (2022), no. 4, 136. Preprint available at arXiv:2008. 13731.

Slides available (contact: giorgio.stefani.math@gmail.com) or on giorgiostefani.weebly.com.

