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Bakry-Émery curvature-dimension condition

Let (M, g) be a smooth Riemannian manifold with Laplace-Beltrami operator ∆.

The heat flow ft = Ptf starting from a datum f is associated to ∂t −∆.

Define ϕ(s) = PsΓ(Pt−sf) for s ∈ [0, t] and t > 0. One can check that✞✝ ☎✆ϕ′(s) = 2PsΓ2(Pt−sf)

where Γ(f, g) = 〈∇f,∇g〉g and Γ2(f, g) =
1
2

!
∆Γ(f, g)− Γ(∆f, g)− Γ(f,∆g)

"
.

Note that
✞✝ ☎✆Γ2(f) = ||Hessf ||22 + Ric(∇f,∇f), where Ric(·, ·) is the Ricci tensor.

If Ric(v, v) ≥ K|v|2g for some K ∈ R, then ϕ′(s) ≥ 2Kϕ(s) and thus✞✝ ☎✆Ric ≥ K =⇒ Γ(Ptf) ≤ e−2Kt PtΓ(f)

the Bakry-Émery-Ledoux pointwise gradient estimate for the heat flow. To consider

N = dimM observe that
✞
✝

☎
✆||Hessf ||22 ≥ 1

N (∆f)2 [Wang, 2011]. Surprisingly, we

have an equivalence:✞
✝

☎
✆CD(K,N) : Ric ≥ K, dimM ≤ N ⇐⇒ Γ2(f) ≥ 1

N (∆f)2 +K Γ(f),

the Bakry-Émery curvature-dimension inequality (we will consider N = ∞ only).
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The Wasserstein space

We see (M, g) as a metric space (X, d) with X = M and d = dg.

Theorem (von Renesse - Sturm, 2005)

Ric ≥ K ⇐⇒ W2(Ptµ,Ptν) ≤ e−Kt W2(µ, ν) for all µ, ν ∈ P2(M)

Here (P2(X),W2) is the Wasserstein metric space, where

P2(X) =

#
µ ∈ P(X) :

$

X

d(x, x0)
2 dµ(x) < +∞, x0 ∈ X

%

and

W 2
2 (µ, ν) = inf

#$

X×X

d2(x, y) dπ : π(x, y) ∈ Plan(µ, ν)
%
,

with
Plan(µ, ν) = {π ∈ P(X ×X) : (p1)#π = µ, (p2)#π = ν}.

Important fact:✞✝ ☎✆(X, d) Polish (geodesic) =⇒ (P2(X),W2) Polish (geodesic).
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The Boltzmann entropy

As before, we see (X, d,m) = (M, g,Volg) as a metric-measure space.

Theorem (von Renesse - Sturm, 2005)

Ric ≥ K ⇐⇒ Entm(µs) ≤ (1−s)Entm(µ0)+sEntm(µ1)−
K

2
s(1−s)W 2

2 (µ0, µ1)

where s ,→ µs is any (1-speed) W2-geodesic joining µ0, µ1 ∈ Dom(Entm).

Here Entm : P2(X) → (−∞,+∞] is the (Boltzmann) entropy☛
✡

✟
✠Entm(µ) =

$

X

% log % dm

for µ = %m ∈ P2(X), with Entm(µ) = +∞ if µ ∕≪ m.

NOTE: we want Ent(µ) > −∞ for all µ ∈ P2(X), but this is OK whenever✞
✝

☎
✆∃x0 ∈ X ∃A,B > 0 : m (Br(x0)) ≤ A exp

!
B r2

"
(exp.ball)

Bishop volume comparison: (X, d,m) = (M, g,Volg) with Ric ≥ K =⇒ (exp.ball).
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To be or not to be... smooth: the birth of CD(K,∞) spaces

On a smooth Riemannian manifold (M, g) we know that

(1) Ric ≥ K

(2) Γ(Pt) ≤ e−2Kt PtΓ

(3) W2(Pt,Pt) ≤ e−Kt W2

(4) Entm is W2-geodesic K-convex

are equivalent, but (4) only need d and m, not the smoothness of (M, g), hence
making sense in metric-measure spaces.

Lott - Villani, Sturm

Definition: (X, d,m) is a CD(K,∞) space if Entm is W2-geodesic K-convex

Natural questions:

What about (2) and (3)?

Can the heat flow be defined in a metric-measure space?
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The Cheeger energy

In a metric-measure space (X, d,m), the Cheeger energy is✎
✍

☞
✌Ch(f) = inf

#
lim infn

1

2

$

X

|Dfn|2 dm : fn → f in L2(X,m), fn ∈ Lip(X)

%

where |Df |(x) = lim sup
y→x

|f(y)− f(x)|
d(x, y) stands for the slope of f : X → R.

Ch is convex, l.s.c. and its domain W1,2
(X, d,m) is dense in L2(X,m)

We can define the heat flow as the (Hilbertian) gradient flow of Ch in L2(X,m):☛
✡

✟
✠Ptf −→

t→0+
f in L2(X,m) and

d
dt

Ptf ∈ −∂−Ch(Ptf) for a.e. t > 0.

The Laplacian
✞✝ ☎✆−∆d,mf ∈ ∂−Ch(f) is the element of minimal L2(X,m)-norm.

CAUTION: W1,2
(X, d,m) with ‖ · ‖W1,2 =

&
‖ · ‖2L2 + Ch(·) may be NOT Hilbert!

Example: consider (Rn, ‖ · ‖p,L n) for p ∕= 2.
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The weak gradient

Any f ∈ W1,2
(X, d,m) has a (unique) weak gradient |Df |w ∈ L2(X,m) such that☛

✡
✟
✠Ch(f) = 1

2

$

X

|Df |w2 dm.

The weak gradient |Df |w behaves like the 'modulus of the gradient' and one can
develop Calculus rules in a non-smooth setting.

We say that Ch is quadratic if it satisfies the parallelogram law✞✝ ☎✆Ch(f + g) + Ch(f − g) = 2Ch(f) + 2Ch(g).

We assume that Ch is quadratic, so that

W1,2
(X, d,m) is Hilbert, Pt is linear, Γ(f) = |Df |2w is quadratic.

By polarization, we can define✞✝ ☎✆Γ(f, g) = |D(f + g)|2w − |Df |2w − |Dg|2w

as the 'scalar product of gradients'.
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The bright side of RCD(K,∞) spaces

IDEA: reinforce CD restricting to Riemannian-like metric-measure spaces only.

Ambrosio - Gigli - Savaré

Definition: (X, d,m) is RCD(K,∞) if it is CD(K,∞) and Ch is quadratic

Theorem (many people...)

Assume (X, d,m) has a quadratic Ch. TFAE:

BE(K,∞): Γ(Ptf) ≤ e−2Kt PtΓ(f)

Kuwada: W2(Ptµ,Ptν) ≤ e−Kt W2(µ, ν)

CD(K,∞): Entm(µs) ≤ (1− s)Entm(µ0) + sEntm(µ1)−
K

2
s(1− s)W 2

2 (µ0, µ1)

EVIK :
d
dt

W 2
2 (Ptµ, ν)

2
+

K

2
W 2

2 (Ptµ, ν) + Ent(Ptµ) ≤ Ent(ν)

Here EVIK stands for Evolution Variational Inequality and encodes the fact that the
heat flow is the metric gradient flow of the entropy in the Wasserstein space.
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The dark side of non-CD(K,∞) spaces, part I: Carnot groups

A Carnot group G is a connected, simply connected, stratified Lie group with✞✝ ☎✆Lie(G) = V1 ⊕ V2 ⊕ · · ·⊕ Vκ, Vi = [V1, Vi−1], [V1, Vκ] = {0}.

The horizontal directions V1 = span{X1, . . . , Xm}, m ∈ N, provide✞
✝

☎
✆∇Gf =

'm
j=1(Xjf)Xj and

✞
✝

☎
✆∆G =

'm
j=1 X

2
j .

One can identify G ∼ (Rn, •) with Haar measure the Lebesgue measure L n.

We want to move only along V1, so the Carnot-Carathéodory distance is✎
✍

☞
✌dCC(x, y) = inf

#$ 1

0

‖γ̇s‖G ds : γ0 = x, γ1 = y, γ̇t ∈ V1

%
.

The space (G, dcc,L n) is Polish, geodesic and
✞✝ ☎✆L n(BCC(x, r)) = CrQ, Q ∈ N.

Theorem (Ambrosio - S., 2018)

The metric-measure space (G, dCC,L
n) is NOT CD(K,∞)!

The case of the Heisenberg group G = Hn was known since [Juillet, 2014].
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The dark side of non-CD(K,∞) spaces, part II: the SU(2) group

SU(2) = Lie group of 2× 2 complex unitary matrices with determinant 1.

Lie algebra su(2) = 2× 2 complex unitary skew-Hermitian matrices with trace 0.

A basis of su(2) is given by the Pauli matrices

X =
!

0 1
−1 0

"
, Y = ( 0 i

i 0 ), Z =
!
i 0
0 −i

"
, i ∈ C,

satisfying the relations✞✝ ☎✆[X,Y ] = 2Z, [Y, Z] = 2X, [Z,X] = 2Y.

Similarly as before, the horizontal generators X,Y provide
✞✝ ☎✆dCC and✞✝ ☎✆∇SU(2)f = (Xf)X + (Y f)Y and

✞✝ ☎✆∆SU(2) = X2 + Y 2.

Using the cylindric coordinates (for r ∈ [0, π
2 ), ϑ ∈ [0, 2π] and ζ ∈ [−π,π])

(r,ϑ, z) ,→ exp(r cosϑX + r sinϑY ) exp(ζ Z) =
(

eiζ cos r ei(ϑ−ζ) sin r
−e−i(ϑ−ζ) sin r e−iζ cos r

)
,

the Haar measure m ∈ P(SU(2)) can be written as
✞
✝

☎
✆dm = 1

4π2 sin(2r) dr dϑ dζ.

The space (SU(2), dCC,m) is Polish, geodesic and compact.
10/16



Why Carnot groups and SU(2) are interesting?

Theorem (Melcher, 2008)

Let G be a Carnot group. There exists CG ≥ 1 such that ΓG(Ptf) ≤ C2
G PtΓ

G(f).

This is much weaker than usual BE, because we lose information at t = 0!
Remark: CG = 1 ⇐⇒ G is commutative [Ambrosio-S., 2018].

Theorem (Baudoin - Bonnefont, 2008)

There exists CSU(2)≥
√
2 such that ΓSU(2)(Ptf) ≤ C2

SU(2)e
−4t PtΓ

SU(2)(f).

QUESTION: can we extend the equivalence

BE ⇐⇒ Kuwada ⇐⇒ CD ⇐⇒ EVI

also to Carnot groups and SU(2)?

NOTE: [Kuwada, 2009] already gives BE ⇐⇒ W2-contraction.
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We do not need smoothness: admissible metric-measure groups

Assume (X, d,m) has Ch quadratic.

Definition (Admissible group)

(X, d,m) is an admissible metric-measure group if:

• the metric space (X, d) is locally compact;

• the set X is a topological group, i.e. (x, y) ,→ xy and x ,→ x−1 are continuous;

• d is left-invariant, i.e. d(zx, zy) = d(x, y) for all x, y, z ∈ X ;

• m is a left-invariant Haar measure, i.e. m is a Radon measure such that
m(xE) = m(E) for all x ∈ X and all Borel set E ⊂ X ;

• X is unimodular, i.e. m is also right-invariant.

REMARK: Carnot groups and SU(2) ARE admissible metric-measure groups.
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Main result

Let c : [0,+∞) → (0,+∞) be such that c, c−1 ∈ L∞([0, T ]) for all T > 0.
IDEA: c is a 'curvature function' and generalizes the usual t ,→ e−Kt.
Examples: c(t) ≡ CG for Carnot groups and c(t) = CSU(2)e

−2t for SU(2).

Define R(a, b) = 1
b−a

* b

a
c−2(s) ds for 0 ≤ a ≤ b.

Theorem (S., 2020)

Let (X, d,m) be an admissible group + some technical hypotheses. TFAE:

BEw : Γ(Ptf) ≤ c2(t)PtΓ(f)

Kuwada: W2(Ptµ,Ptν) ≤ c(t)W2(µ, ν)

CDw : Entm(Pt+hµs) ≤ (1− s)Entm(Ptµ0) + sEntm(Ptµ1)

+
s(1− s)

2h

+
1

R(t, t+ h)
W 2

2 (µ0, µ1)−W 2
2 (Ptµ0,Ptµ1)

,

for t ≥ 0 and h > 0, with s ,→ µs a (1-speed) W2-geodesic

EVIw : W 2
2 (Pt1µ1,Pt0µ0)−

1

R(t0, t1)
W 2

2 (µ1, µ0)

≤ 2(t1 − t0)
(

Entm(Pt0µ0)− Entm(Pt1µ1)
)

for 0 ≤ t0 ≤ t1
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Comments

CDw : Entm(Pt+hµs) ≤ (1− s)Entm(Ptµ0) + sEntm(Ptµ1)

+ s(1−s)
2h

(
1

R(t,t+h) W
2
2 (µ0, µ1)−W 2

2 (Ptµ0,Ptµ1)
)

for t ≥ 0 and h > 0

EVIw : W 2
2 (Pt1µ1,Pt0µ0)− W 2

2 (µ1,µ0)
R(t0,t1)

≤ 2(t1 − t0)
(

Entm(Pt0µ0)− Entm(Pt1µ1)
)

for 0 ≤ t0 ≤ t1

1. The equivalence BEw ⇐⇒ Kuwada is known, see [Kuwada, 2009] and [Ambrosio
- Gigli - Savaré, 2015], but we (re)do the proof because of some technical issues.

2. If t = 0 in CDw , then Entm(Phµs) ≤ (1− s)Entm(µ0) + sEntm(µ1)

+A(h)
2 s(1− s)W 2

2 (µ0, µ1) with A(h) = R(0,h)−1−1
h for h > 0.

3. CDw =⇒ Kuwada is easy: multiply by h > 0 and then send h → 0+.

4. EVIw =⇒ CDw follows from a general argument, see [Daneri - Savaré, 2008].

5. We only need to prove BEw =⇒ EVIw . The proof is an adaptation of [Ambrosio
- Gigli - Savaré, 2015] and [Erbar - Kuwada - Sturm, 2015].
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Other comments and research directions

CDw : Entm(Pt+hµs) ≤ (1− s)Entm(Ptµ0) + sEntm(Ptµ1)

+ s(1−s)
2h

(
1

R(t,t+h) W
2
2 (µ0, µ1)−W 2

2 (Ptµ0,Ptµ1)
)

for t ≥ 0 and h > 0

EVIw : W 2
2 (Pt1µ1,Pt0µ0)− W 2

2 (µ1,µ0)
R(t0,t1)

≤ 2(t1 − t0)
(

Entm(Pt0µ0)− Entm(Pt1µ1)
)

for 0 ≤ t0 ≤ t1

6. We need the group structure of X to exploit the de-singularization property of the
convolution: % ) µ ≪ m. Can we avoid this assumption? Example: metric graphs.

Note: BEw =⇒ Ptµ ≪ m, but the W2-metric velocity of s ,→ µt
s = Ptµs cannot be

related to the one of s ,→ µs if c(0+) > 1. Examples: Carnot groups and SU(2)!
7. Consider a sub-Riemannian manifold M (possibly, without a group structure). Is
there a BEw inequality also encoding information about the dimension of M?
8. RCD(K,∞) and EVIK imply several nice properties about (X, d,m) (MCP,
gradient flows, m-GH stability,...). What can we deduce from RCDw and EVIw?
9. W2-contractions are also known for Markovian diffusion semigroup associated to
L = ∆+ Z with Z ∈ C1 on (M, g). Can we extend the result to this case?
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THANK YOU FOR YOUR ATTENTION!

G. Stefani, Generalized Bakry-Émery curvature condition and equivalent entropic inequalities
in groups, J. Geom. Anal. 32 (2022), no. 4, 136. Preprint available at arXiv:2008.13731.

Slides available (contact: giorgio.stefani.math@gmail.com) or on giorgiostefani.weebly.com.
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