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Warm-up in RN

In RN the solution of the heat equation
!
∂tft = ∆ft on RN × (0,+∞)

f0 = f on RN

is given by convolution as Ptf = pt ∗ f , where

pt(x) =
1

(4πt)N/2
e−

|x|2
4t , x ∈ RN , t > 0,

is the heat kernel.

Hence we have ∇Ptf = pt ∗ (∇f) = Pt∇f , so that

Γ(Ptf) = |∇Ptf |2 = |Pt∇f |2 ≤Pt(|∇f |2) = PtΓ(f)

by Jensen's inequality, since pt is a probability measure. Thus✞✝ ☎✆Γ(Ptf) ≤ PtΓ(f)

for all t > 0 and f sufficiently regular.
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What happens in a Riemannian manifold? [1/2]

Let (M, g) be a smooth Riemannian manifold with Laplace-Beltrami operator ∆.

The heat flow ft = Ptf starting from a datum f is associated to ∂t −∆ as before.

Define ϕ(s) = PsΓ(Pt−sf) for s ∈ [0, t] and t > 0, so that

PtΓ(f)− Γ(Ptf) = ϕ(t)− ϕ(0) =

" t

0

ϕ′(s) ds.

One can check that
ϕ′(s) = 2PsΓ2(Pt−sf)

where

Γ(f, g) = 〈∇f,∇g〉g, Γ2(f, g) =
1
2

#
∆Γ(f, g)− Γ(∆f, g)− Γ(f,∆g)

$
.

The geometric meaning of Γ2 is✞✝ ☎✆Γ2(f) = ||Hessf ||22 + Ric(∇f,∇f),

where Ric(·, ·) is the Ricci tensor on (M, g).

3/27



What happens in a Riemannian manifold? [2/2]

Let us assume that, for some K ∈ R,✞
✝

☎
✆Ric(v, v) ≥ K|v|2g ,

so that

Γ2(f) = ||Hessf ||22 + Ric(∇f,∇f) ≥ KΓ(f).

Consequently ϕ′(s) = 2PsΓ2(Pt−sf) ≥ 2KPsΓ(Pt−sf) = 2Kϕ(s) and thus, by
Grönwall inequality, ✞✝ ☎✆Ric ≥ K =⇒ Γ(Ptf) ≤ e−2Kt PtΓ(f)

the Bakry-Émery-Ledoux pointwise gradient estimate for the heat flow.

If M = RN , then K = 0 and we recover the Euclidean case.

To consider N = dimM observe that
✞
✝

☎
✆||Hessf ||22 ≥ 1

N (∆f)2 [Wang, 2011].

Surprisingly, we have an equivalence:✞
✝

☎
✆CD(K,N) : Ric ≥ K, dimM ≤ N ⇐⇒ Γ2(f) ≥ 1

N (∆f)2 +K Γ(f),

the Bakry-Émery curvature-dimension inequality (we will consider N = ∞ only).
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Another equivalence via Wasserstein distance

We see (M, g) as a metric space (X, d) with X = M and d = dg.

Theorem (von Renesse - Sturm, 2005)

Ric ≥ K ⇐⇒ W2(Ptµ,Ptν) ≤ e−Kt W2(µ, ν) for all µ, ν ∈ P2(M)

Here (P2(X),W2) is the Wasserstein metric space, where

P2(X) =

%
µ ∈ P(X) :

"

X

d(x, x0)
2 dµ(x) < +∞, x0 ∈ X

&

and

W 2
2 (µ, ν) = inf

%"

X×X

d2(x, y) dπ : π(x, y) ∈ Plan(µ, ν)
&
,

with
Plan(µ, ν) = {π ∈ P(X ×X) : (p1)#π = µ, (p2)#π = ν}.

Important fact:✞✝ ☎✆(X, d) Polish (geodesic) =⇒ (P2(X),W2) Polish (geodesic).
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Another equivalence via Boltzmann entropy

As before, we see (X, d,m) = (M, g,Volg) as a metric-measure space.

Theorem (von Renesse - Sturm, 2005)

Ric ≥ K ⇐⇒ Entm(µs) ≤ (1−s)Entm(µ0)+sEntm(µ1)−
K

2
s(1−s)W 2

2 (µ0, µ1)

where s -→ µs is any (1-speed) W2-geodesic joining µ0, µ1 ∈ Dom(Entm).

Here Entm : P2(X) → (−∞,+∞] is the (Boltzmann) entropy☛
✡

✟
✠Entm(µ) =

"

X

% log % dm

for µ = %m ∈ P2(X), with Entm(µ) = +∞ if µ ∕≪ m.

NOTE: we want Ent(µ) > −∞ for all µ ∈ P2(X), but this is OK whenever✞
✝

☎
✆∃x0 ∈ X ∃A,B > 0 : m (Br(x0)) ≤ A exp

#
B r2

$
(exp.ball)

Bishop volume comparison: (X, d,m) = (M, g,Volg) with Ric ≥ K =⇒ (exp.ball).
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To be or not to be... smooth: the birth of CD(K,∞) spaces

On a smooth Riemannian manifold (M, g) we know that

(1) Ric ≥ K

(2) Γ(Pt) ≤ e−2Kt PtΓ

(3) W2(Pt,Pt) ≤ e−Kt W2

(4) Entm is W2-geodesic K-convex

are equivalent, but (4) only need d and m, not the smoothness of (M, g), hence
making sense in metric-measure spaces.

Lott - Villani, Sturm

Definition: (X, d,m) is a CD(K,∞) space if Entm is W2-geodesic K-convex

Natural questions:

What about (2) and (3)?

Can the heat flow be defined in a metric-measure space?
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Some like it hot... and non-smooth

In a metric-measure space (X, d,m), the Cheeger energy is✎
✍

☞
✌Ch(f) = inf

%
lim infn

"

X

|Dfn|2 dm : fn → f in L2(X,m), fn ∈ Lip(X)

&

where |Df |(x) = lim sup
y→x

|f(y)− f(x)|
d(x, y) stands for the slope of f : X → R.

Ch is convex, l.s.c. and its domain W1,2
(X, d,m) is dense in L2(X,m)

We can define the heat flow as the (Hilbertian) gradient flow of Ch in L2(X,m):☛
✡

✟
✠Ptf −→

t→0+
f in L2(X,m) and

d
dt

Ptf ∈ −∂−Ch(Ptf) for a.e. t > 0.

The Laplacian
✞✝ ☎✆−∆d,mf ∈ ∂−Ch(f) is the element of minimal L2(X,m)-norm.

CAUTION: W1,2
(X, d,m) with ‖ · ‖W1,2 =

'
‖ · ‖2L2 + Ch(·) may be NOT Hilbert!

Example: consider (Rn, ‖ · ‖p,L n) for p ∕= 2.
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Non-smooth Calculus after Ambrosio - Gigli - Savaré

Any f ∈ W1,2
(X, d,m) has a (unique) weak gradient✞✝ ☎✆|Df |w ∈ L2(X,m)

such that ☛
✡

✟
✠Ch(f) = 1

2

"

X

|Df |w2 dm.

The weak gradient |Df |w behaves like the 'modulus of the gradient' and one can
develop Calculus rules in a non-smooth setting:

• locality: |Df |w = |Dg|w m-a.e. on {f − g = c};

• Leibniz rule: |D(fg)|w ≤ |f | |Dg|w + |Df |w |g|;

• chain rule: ϕ ∈ Lip(R) =⇒ |Dϕ(f)|w ≤ |ϕ′(f)| |Df |w .
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Quadratic Cheeger energy

We say that Ch is quadratic if it satisfies the parallelogram law✞✝ ☎✆Ch(f + g) + Ch(f − g) = 2Ch(f) + 2Ch(g).

We assume that Ch is quadratic, so that

W1,2
(X, d,m) is Hilbert, Pt is linear, Γ(f) = |Df |2w is quadratic.

By polarization, we can define✞✝ ☎✆Γ(f, g) = |D(f + g)|2w − |Df |2w − |Dg|2w

as the 'scalar product of gradients':

• Leibniz rule: Γ(fg, h) = g Γ(f, h) + f Γ(g, h);

• chain rule: Γ(ϕ(f), g) = ϕ′(f)Γ(f, g);

• integration-by-parts:
"

X

Γ(f, g) dm = −
"

X

g∆d,mf dm;

• Laplacian chain rule: ∆d,m(ϕ ◦ f) = ϕ′(f)∆d,mf + ϕ′′(f)Γ(f).
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The bright side of RCD(K,∞) spaces

IDEA: reinforce CD restricting to Riemannian-like metric-measure spaces only.

Ambrosio - Gigli - Savaré

Definition: (X, d,m) is RCD(K,∞) if it is CD(K,∞) and Ch is quadratic

Theorem (many people...)

Assume (X, d,m) has a quadratic Ch. TFAE:

BE(K,∞): Γ(Ptf) ≤ e−2Kt PtΓ(f)

Kuwada: W2(Ptµ,Ptν) ≤ e−Kt W2(µ, ν)

CD(K,∞): Entm(µs) ≤ (1− s)Entm(µ0) + sEntm(µ1)−
K

2
s(1− s)W 2

2 (µ0, µ1)

EVIK :
d
dt

W 2
2 (Ptµ, ν)

2
+

K

2
W 2

2 (Ptµ, ν) + Ent(Ptµ) ≤ Ent(ν)

Here EVIK stands for Evolution Variational Inequality and encodes the fact that the
heat flow is the metric gradient flow of the entropy in the Wasserstein space.
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What happens in the Heisenberg group? [1/2]

On the manifold R3 consider the non-commutative group operation✞
✝

☎
✆p • q = (x, y, z) • (x′, y′, z′) =

#
x+ x′, y + y′, z + z′ + 1

2 (xy
′ − yx′)

$
.

The resulting Lie group (R3, •) ≡ H1 is the (first) Heisenberg group.

There is a family of dilations:
✞✝ ☎✆δλ(p) = (λx,λy,λ2z) for λ > 0.

The Haar measure is the Lebesgue measure
✞✝ ☎✆L 3 = dx dy dz.

The tangent space is spanned by☛
✡

✟
✠X = ∂x − y

2
∂z, Y = ∂y +

x

2
∂z, Z = [X,Y ] = ∂z.

We want to move only along the horizontal generators X,Y , so we define✎
✍

☞
✌dCC(p, q) = inf

%" 1

0

‖γ̇s‖H1 ds : γ0 = p, γ1 = q, γ̇s ∈ span{Xγs , Yγs}
&
.

The function dCC is the Carnot-Carathéodory (CC) distance [Chow - Rashevskii].
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What happens in the Heisenberg group? [2/2]

The (sub-)Laplacian in H1 is ✞✝ ☎✆∆H1 = X2 + Y 2,

which is only hypoelliptic: the heat kernel pt of ∂t −∆H1 is smooth [Hörmander].

In H1 the solution of the (sub-elliptic) heat equation
!
∂tft = ∆H1ft on R3 × (0,+∞)

f0 = f on R3

is thus given by group convolution as☛
✡

✟
✠Ptf(p) = pt ) f(p) =

"

R3

pt(q
−1p) f(q) dq =

"

R3

pt(q) f(pq
−1) dq.

The horizontal gradient
✞✝ ☎✆∇H1 = (X,Y ) is only left-invariant, so we are in troubles:

∇H1(Ptf) = ∇H1(pt ) f) = (∇H1pt) ) f ∕= pt ) (∇H1f) = Pt(∇H1f).

Theorem (Juillet, 2009)

The metric-measure space (H1, dCC,L
3) is NOT CD(K,∞)!
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The dark side of non-CD(K,∞) spaces, part I: Carnot groups

A Carnot group G is a connected, simply connected, stratified Lie group with✞✝ ☎✆Lie(G) = V1 ⊕ V2 ⊕ · · ·⊕ Vκ, Vi = [V1, Vi−1], [V1, Vκ] = {0}.

The horizontal directions V1 = span{X1, . . . , Xm}, m ∈ N, provide✞
✝

☎
✆∇Gf =

(m
j=1(Xjf)Xj and

✞
✝

☎
✆∆G =

(m
j=1 X

2
j .

One can identify G ∼ (Rn, •) with Haar measure the Lebesgue measure L n.

We want to move only along V1, so the Carnot-Carathéodory distance is✎
✍

☞
✌dCC(x, y) = inf

%" 1

0

‖γ̇s‖G ds : γ0 = x, γ1 = y, γ̇t ∈ V1

&
.

The space (G, dcc,L n) is Polish, geodesic and
✞✝ ☎✆L n(BCC(x, r)) = CrQ, Q ∈ N.

Example: for H1 it is κ = 2, V1 = span{X,Y }, V2 = span{Z}, Q = 4.

Theorem (Ambrosio - S., 2018)

The metric-measure space (G, dCC,L
n) is NOT CD(K,∞)!
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The dark side of non-CD(K,∞) spaces, part II: the SU(2) group

SU(2) = Lie group of 2× 2 complex unitary matrices with determinant 1.

Lie algebra su(2) = 2× 2 complex unitary skew-Hermitian matrices with trace 0.

A basis of su(2) is given by the Pauli matrices

X =
#

0 1
−1 0

$
, Y = ( 0 i

i 0 ), Z =
#
i 0
0 −i

$
, i ∈ C,

satisfying the relations✞✝ ☎✆[X,Y ] = 2Z, [Y, Z] = 2X, [Z,X] = 2Y.

Similarly as before, the horizontal generators X,Y provide
✞✝ ☎✆dCC and✞✝ ☎✆∇SU(2)f = (Xf)X + (Y f)Y and

✞✝ ☎✆∆SU(2) = X2 + Y 2.

Using the cylindric coordinates (for r ∈ [0, π
2 ), ϑ ∈ [0, 2π] and ζ ∈ [−π,π])

(r,ϑ, z) -→ exp(r cosϑX + r sinϑY ) exp(ζ Z) =
)

eiζ cos r ei(ϑ−ζ) sin r
−e−i(ϑ−ζ) sin r e−iζ cos r

*
,

the Haar measure m ∈ P(SU(2)) can be written as
✞
✝

☎
✆dm = 1

4π2 sin(2r) dr dϑ dζ.

The space (SU(2), dCC,m) is Polish, geodesic and compact.
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Why Carnot groups and SU(2) are interesting?

Theorem (Driver - Melcher, 2005)

There exists CH1> 1 such that ΓH1

(Ptf) ≤ C2
H1PtΓ

H1

(f).

This is much weaker than usual BE, because we lose information at t = 0!

Theorem (Melcher, 2008)

Let G be a Carnot group. There exists CG ≥ 1 such that ΓG(Ptf) ≤ C2
G PtΓ

G(f).

Remark: CG = 1 ⇐⇒ G is commutative [Ambrosio-S., 2018].

Theorem (Baudoin - Bonnefont, 2008)

There exists CSU(2)≥
√
2 such that ΓSU(2)(Ptf) ≤ C2

SU(2)e
−4t PtΓ

SU(2)(f).

QUESTION: can we extend the equivalence

BE ⇐⇒ Kuwada ⇐⇒ CD ⇐⇒ EVI
also to Carnot groups and SU(2)?

NOTE: [Kuwada, 2009] already gives BE ⇐⇒ W2-contraction.
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We do not need smoothness: admissible metric-measure groups

Assume (X, d,m) has Ch quadratic.

Definition (Admissible group)

(X, d,m) is an admissible metric-measure group if:

• the metric space (X, d) is locally compact;

• the set X is a topological group, i.e. (x, y) -→ xy and x -→ x−1 are continuous;

• d is left-invariant, i.e. d(zx, zy) = d(x, y) for all x, y, z ∈ X ;

• m is a left-invariant Haar measure, i.e. m is a Radon measure such that
m(xE) = m(E) for all x ∈ X and all Borel set E ⊂ X ;

• X is unimodular, i.e. m is also right-invariant.

REMARK: Carnot groups and SU(2) ARE admissible metric-measure groups.
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Main result

Let c : [0,+∞) → (0,+∞) be such that c, c−1 ∈ L∞([0, T ]) for all T > 0.
IDEA: c is a 'curvature function' and generalizes the usual t -→ e−Kt.
Examples: c(t) ≡ CG for Carnot groups and c(t) = CSU(2)e

−2t for SU(2).

Define R(a, b) = 1
b−a

+ b

a
c−2(s) ds for 0 ≤ a ≤ b.

Theorem (S., 2020)

Let (X, d,m) be an admissible group + some technical hypotheses. TFAE:

BEw : Γ(Ptf) ≤ c2(t)PtΓ(f)

Kuwada: W2(Ptµ,Ptν) ≤ c(t)W2(µ, ν)

CDw : Entm(Pt+hµs) ≤ (1− s)Entm(Ptµ0) + sEntm(Ptµ1)

+
s(1− s)

2h

,
1

R(t, t+ h)
W 2

2 (µ0, µ1)−W 2
2 (Ptµ0,Ptµ1)

-

for t ≥ 0 and h > 0, with s -→ µs a (1-speed) W2-geodesic

EVIw : W 2
2 (Pt1µ1,Pt0µ0)−

1

R(t0, t1)
W 2

2 (µ1, µ0)

≤ 2(t1 − t0)
)

Entm(Pt0µ0)− Entm(Pt1µ1)
*

for 0 ≤ t0 ≤ t1
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Comments

CDw : Entm(Pt+hµs) ≤ (1− s)Entm(Ptµ0) + sEntm(Ptµ1)

+ s(1−s)
2h

)
1

R(t,t+h) W
2
2 (µ0, µ1)−W 2

2 (Ptµ0,Ptµ1)
*

for t ≥ 0 and h > 0

EVIw : W 2
2 (Pt1µ1,Pt0µ0)− W 2

2 (µ1,µ0)
R(t0,t1)

≤ 2(t1 − t0)
)

Entm(Pt0µ0)− Entm(Pt1µ1)
*

for 0 ≤ t0 ≤ t1

1. The equivalence BEw ⇐⇒ Kuwada is known, see [Kuwada, 2009] and [Ambrosio
- Gigli - Savaré, 2015], but we (re)do the proof because of some technical issues.

2. If t = 0 in CDw , then Entm(Phµs) ≤ (1− s)Entm(µ0) + sEntm(µ1)

+A(h)
2 s(1− s)W 2

2 (µ0, µ1) with A(h) = R(0,h)−1−1
h for h > 0.

3. CDw =⇒ Kuwada is easy: multiply by h > 0 and then send h → 0+.

4. EVIw =⇒ CDw follows from a general argument, see [Daneri - Savaré, 2008].

5. We only need to prove BEw =⇒ EVIw . The proof is an adaptation of [Ambrosio
- Gigli - Savaré, 2015] and [Erbar - Kuwada - Sturm, 2015].
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Other comments and futurama

CDw : Entm(Pt+hµs) ≤ (1− s)Entm(Ptµ0) + sEntm(Ptµ1)

+ s(1−s)
2h

)
1

R(t,t+h) W
2
2 (µ0, µ1)−W 2

2 (Ptµ0,Ptµ1)
*

for t ≥ 0 and h > 0

EVIw : W 2
2 (Pt1µ1,Pt0µ0)− W 2

2 (µ1,µ0)
R(t0,t1)

≤ 2(t1 − t0)
)

Entm(Pt0µ0)− Entm(Pt1µ1)
*

for 0 ≤ t0 ≤ t1

1. We need the group structure of X to exploit the de-singularization property of the
convolution: % ) µ ≪ m. Can we avoid this assumption? Example: metric graphs.

Note: BEw =⇒ Ptµ ≪ m, but the W2-metric velocity of s -→ µt
s = Ptµs cannot be

related to the one of s -→ µs if c(0+) > 1. Examples: Carnot groups and SU(2)!
2. Consider a sub-Riemannian manifold M (possibly, without a group structure). Is
there a BEw inequality also encoding information about the dimension of M?
3. RCD(K,∞) and EVIK imply several nice properties about (X, d,m) (MCP,
gradient flows, m-GH stability,...). What can we deduce from RCDw and EVIw?
4. W2-contractions are also known for Markovian diffusion semigroup associated
to L = ∆+ Z with Z ∈ C1 on (M, g). Can we extend the result to this case?
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Proof of BEw =⇒ EVIw [1/6]

Let s ∈ [0, 1] and assume
✞✝ ☎✆s -→ µs = fsm is joining µ0, µ1 ∈ P2(X).

Define a new curve s -→ µ̃s = f̃sm as✞✝ ☎✆µ̃s = Pη(s)µϑ(s), so that
✞
✝

☎
✆f̃s = Pη(s)fϑ(s),

where η ∈ C2
([0, 1]; [0,+∞)) and ϑ ∈ C1

([0, 1]; [0, 1]) with ϑ(0) = 0 and ϑ(1) = 1.

At least formally, we can compute☛
✡

✟
✠d

ds
f̃s = η̇(s)∆Pη(s)fϑ(s) + ϑ̇(s)Pη(s)ḟϑ(s)

for s ∈ (0, 1).
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Proof of BEw =⇒ EVIw [2/6]☛
✡

✟
✠d

ds
f̃s = η̇(s)∆Pη(s)fϑ(s) + ϑ̇(s)Pη(s)ḟϑ(s)

On the one hand, integrating by parts, we have

d
ds

Entm(µ̃s) =
d
ds

"

X

f̃s log f̃s dm

=

"

X

(1 + log f̃s)
d
ds

f̃s dm

=− η̇(s)

"

X

p′(f̃s)Γ(f̃s) dm+ ϑ̇(s)

"

X

p(f̃s)Pη(s)ḟϑ(s) dm

for s ∈ (0, 1), where
✞✝ ☎✆p(r) = 1 + log r for all r > 0.

Since p′(r) = r(p′(r))2, by the chain rule Γ(ϕ(f)) = (ϕ′(f))2 Γ(f) we can write

d
ds

Entm(µ̃s) = −η̇(s)

"

X

Γ(gs) dµ̃s + ϑ̇(s)

"

X

ḟϑ(s) Pη(s)gs dm

for s ∈ (0, 1), where
✞
✝

☎
✆gs = p(f̃s) for brevity.
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Proof of BEw =⇒ EVIw [3/6]

On the other hand, by Kantorovich duality, we have

1

2
W 2

2 (µ, ν) = sup
%"

X

Q1ϕ dµ−
"

X

ϕ dν : ϕ ∈ Lip(X) with bounded support
&
,

where ✎
✍

☞
✌Qsϕ(x) = inf

y∈X
ϕ(y) +

d2(y, x)

2s
,

for x ∈ X and s > 0, is the Hopf-Lax infimum-convolution semigroup.

Note that ϕs = Qsϕ solves the Hamilton-Jacobi equation
✞
✝

☎
✆∂sϕs +

1
2 |Dϕs|2 = 0.

Again integrating by parts, we can compute

d
ds

"

X

ϕs f̃s dm =

"

X

∂sϕs dµ̃s +

"

X

ϕs
d
ds

f̃s dm

=− 1

2

"

X

Γ(ϕs) dµ̃s − η̇(s)

"

X

Γ(ϕs, f̃s) dm

+ ϑ̇(s)

"

X

ḟϑ(s) Pη(s)ϕs dm.
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Proof of BEw =⇒ EVIw [4/6]

Combining the above inequalities, we get

d
ds

"

X

ϕs f̃s dm+ η̇(s)
d
ds

Entm(µ̃s) ≤ −1

2

"

X

#
Γ(ϕs) + η̇(s)2 Γ(gs)

$
dµ̃s

− η̇(s)

"

X

Γ(ϕs, f̃s) dm+ ϑ̇(s)

"

X

ḟϑ(s) Pη(s)(ϕs + η̇(s) gs) dm

for s ∈ (0, 1), forgetting the term − η̇(s)2

2

+
X
Γ(gs) dµ̃s ≤ 0.

Now by non-smooth Calculus (since r p′(r) = 1)

Γ(ϕs + η̇(s) gs) = Γ(ϕs) + 2 η̇(s)Γ(ϕs, gs) + η̇(s)2 Γ(gs),

Γ(ϕs, gs) = Γ(ϕs, p(f̃s)) = p′(f̃s)Γ(ϕs, f̃s),

Γ(ϕs, gs) f̃s = f̃s p
′(f̃s)Γ(ϕs, f̃s) = Γ(ϕs, f̃s),

and thus
d
ds

"

X

ϕs f̃s dm+ η̇(s)
d
ds

Entm(µ̃s) ≤ −1

2

"

X

Γ(ϕs + η̇(s) gs) dµ̃s

+ ϑ̇(s)

"

X

ḟϑ(s) Pη(s)(ϕs + η̇(s) gs) dm.
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Proof of BEw =⇒ EVIw [5/6]

At this point, the crucial information we need on s -→ µs = fsm is that [Lisini]
"

X

ḟs ψ dm ≤ |µ̇s|
,"

X

Γ(ψ) dµs

- 1
2

(Lisini)

for all 'nice' functions ψ, where

|µ̇s| = lim
h→0

W2(µs+h, µs)

h

is the metric velocity of the curve s -→ µs with respect to the Wasserstein distance.

We hence may choose ψ = Pη(s)(ϕs + η̇(s) gs) and estimate

ϑ̇(s)

"

X

ḟϑ(s) Pη(s)(ϕs + η̇(s) gs) dm =

"

X

,
d
ds

fϑ(s)

-
Pη(s)(ϕs + η̇(s) gs) dm

(Lisini)
≤ |ϑ̇(s)| |µ̇ϑ(s)|

,"

X

Γ(Pη(s)(ϕs + η̇(s) gs)) dµs

- 1
2

(C-S)
≤ c2(η(s))

2
ϑ̇(s)2 |µ̇ϑ(s)|2 +

c−2(η(s))

2

"

X

Γ(Pη(s)(ϕs + η̇(s) gs)) dµs

(BEw)
≤ c2(η(s))

2
ϑ̇(s)2 |µ̇ϑ(s)|2 +

1

2

"

X

Γ(ϕs + η̇(s) gs) dµ̃s.
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Proof of BEw =⇒ EVIw [6/6]

By combining the above inequalities, we conclude that✎
✍

☞
✌

d
ds

"

X

ϕs f̃s dm+ η̇(s)
d
ds

Entm(µ̃s) ≤
c2(η(s))

2
ϑ̇(s)2 |µ̇ϑ(s)|2

for s ∈ (0, 1).

Choose
✞
✝

☎
✆ϑ̇(s) = c−2(η(s)) and integrate, so that, by Kantorovich duality, we get

1

2
W 2

2 (Pη(1)µ1,Pη(0)µ0)−
1

2R(η)
W 2

2 (µ1, µ0) + η̇(1)Entm(Pη(1)µ1)

≤ η̇(0)Entm(Pη(0)µ0) +

" 1

0

η̈(s)Entm(Pη(s)µϑ(s)) ds,

where R(η) =
" 1

0

c−2(η(s)) ds.

No information on Entm(Pη µϑ) =⇒ choose
✞✝ ☎✆η(s) = (1− s)t0 + st1 =⇒ EVIw .
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