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Warm-up in RY

In R the solution of the heat equation

fo=1f onRY

is given by convolution as Py f = p, * f, where

{8tft = Aft onRY x (O, +OO)

1 |z|2

pt(l')zmeiﬁ, xéRN, t>0,

iS the heat kernel.

Hence we have VP, f = p, * (Vf) = P,V f, s0 that

L(Pif) = [VP.fI? = PV P <P(IVf?) = PT(f)
by densen's inequality, since p, is a probability measure. Thus

(T(P.f) < P.I()))

for allt > 0 and f sufficiently regular.
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What happens in a Riemannian manifold? [ 1/2]

Let (M, 9) be a smooth Riemannian manifold with Laplace-Beltrami operator A.
The heat flow f; = P.f starting from a datum f is associated to 9; — A as before.
Define p(s) = PsI'(P—s f) for s € [0,¢] and ¢ > 0, So that

P.I(f) — T'(PLf) = (t) — (0) = / o/(s) ds.

One can check that
' (s) = 2P 2 (Py_sf)

where

The geometric meaning of T's is

(Ta(f) = [Hess /I3 + RiE(V £, V), |

where Ric(, -) is the Ricci tensor on (M, g).
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What happens in a Riemannian manifold? [2/2]

Let us assume that, for some K € R,
[Ric(v,v) > Km;,]

30 that
Ly (f) = [[Hessf[|3 +Ric(Vf, Vf) > KT(f).

Consequently ¢'(s) = 2P,y (Py—s f) > 2KP,I'(P,_, f) = 2K ¢(s) and thus, by
Gronwall inequality,

[Ric > K = [(P.f) < e 2Kt PtF(f)]

the Bakry-Emery-Ledoux pointwise gradient estimate for the heat flow.
It M = R¥, then K = 0 and we recover the Euclidean case.

To consider N' = dimM observe that [HHess fll2> LA f)?] [Wang, 2011

Surprisingly, we have an equivalence:

[CD(K,N) Ric> K, dmM < N <= Dy(f) > %(Af)erKF(f)J

the Bakry-Emery curvature-dimension inequality (we will consider N = oo only).
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Another equivalence via Wasserstein distance
We see (M, g) as a metric space (X,d) with X = M and d = d,.
Theorem (von Renesse - Sturm, 2005)

Ric > K <= Wy(Pyu,Piv) < e Kt Wo(u,v) for all p,v € Po(M)

Here (22,(X), Ws) is the Wasserstein metric space, where

Py(X) = {ﬂ € A(X): /Xd(ycgvo)2 du(z) < +o0, g € X}
and
W2 (p,v) = inf{/X . d?(z,y) dr : w(z,y) € Plan(p, V)},

with
Plan(u, v) = {m € Z(X x X) : (p1)sm = p, (p2)sm = v}

Important fact:

(X, d) Polish (geodesic) = (2(X), W2) Polish (geodesic) |
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Another equivalence via Boltzmann entropy

As before, we see (X, d, m) = (M, g, Volg) as a metric-measure space.

Theorem (von Renesse - Sturm, 2005)

: K

Ric > K <= Enty(us) < (1—5)Enty (po) + 5 Ent (p1) — 55(1 —8) W (1o, p11)
where s — p is any (1-speed) Wh-geodesic joining po, 1 € Dom(Enty,).

Here Enty: P5(X) — (—o0,4+00] is the (Boltzmann) entropy

‘Entm(,u) = /Xgloggde

for u = om € P5(X), with Enty (1) = o0 if g & m.

NOTE: we want Ent(u) > —oo for all 4 € Z5(X), but this is OK whenever

[azo €X JAB>0 : m(B(z0)) < Aexp(B r2)] (expball)

Bishop volume comparison: (X,d, m) = (M, g, Voly) with Ric > K = (expball).
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To be or not to be... smooth: the birth of CD(K, co) Spaces

On a smooth Riemannian manifold (M, g) we know that
()Ric > K
(2)T(P;) < e 2Ktp,I
(3) Wa (P, Py) < e Kt
(4) Enty, is Wa-geodesic K-convex

are equivalent, but (4) only need d and m, not the smoothness of (M, g), hence
making sense in metric-measure spaces.

Lott - Villani, Sturm
Definition: (X, d,m) is a CD(K, o) space if Enty, is Wa-geodesic K-convex

Natural questions:

What about (2) and (3)?
Can the heat flow be defined in a metric-measure space?
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Some like it hot... and non-smooth

In a metric-measure space (X, d, m), the Cheeger energy is
[Ch(f) = inf{liminfn/ Df,|?dm: f, — fin L*(X,m), f, € Lip(X)D
X

. f(y) — f(=)]
D = N
where |Df|(z) 'ngp d(z,y)

stands for the slope of f: X — R.

Ch is convex, [sc. and its domain W"*(X,d, m) is dense in L2(X, m)

We can define the heat flow as the (Hilbertian) gradient flow of Ch in L2(X, m):

[Ptf o finL*(X,m) and d%Ptf € —0~Ch(P,f) for ae. t > O.J

The Laplacian [—Ad,m f e o Ch( f)] is the element of minimal L?(X, m)-norm.

CAUTION: W"?(X, d, m) with || - [[y.2 = /|| - % + Ch(-) may be NOT Hilpert!
Example: consider (R™, || - ||, -£™) for p # 2.
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Non-smooth Calculus after Ambrosio - Gigli - Savaré

Any f € W"?(X,d, m) has a (unique) weak gradient

(IDfl € L2(X.m))

such that

Chn) =5 [ IPfIE dm.

The weak gradient |Df/,, behaves like the 'modulus of the gradient’ and one can
develop Calculus rules in a non-smooth setting:

e locality: [Dflw = |Dglw m-ae.on{f —g=c};
o Lebniz rule: [D(fg)lw < |£]1Dglw + [Pfw lgl;
e chainrule: ¢ € LD(R) = Do (f)]w < €' (/)] IPf|w-
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Quadratic Cheeger energy
We say that Ch is quadratic if it satisfies the parallelogram law

((Ch(f +g) + Ch(f — g) = 2Ch(f) + 2Ch(g). |

We assume that Ch is quadratic, so that
WH2(X,d, m) is Hibert, P, is linear, T(f) = |Df|2 is quadratic.
By polarization, we can define
(T(£.9) = ID(f + 9)2, — IDfP2 — Dg2, |

as the 'scalar product of gradients":

o Lebbniz rule: T(fg,h) = gT(f. k) + fT(g, h);

o chainrule: L(e(f), 9) = ¢'(f)T(f, 9):

e integration-by-parts: / I'(f,g)dm=— / g Ag m fdm;

X X

e Laplacian chain rule: Agm(¢ o f) = ¢’ (f) Admf + " (f)T(f).
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The bright side of RCD(K, co) spaces

IDEA: reinforce CD restricting to Riemannian-like metric-measure spaces only.

Ambrosio - Gigli - Savaré
Definition: (X, d, m) is RCD(K, o0) if it is CD(K, 00) and Ch is quadratic

Theorem (many people...)

Assume (X, d,m) has a quadratic Ch. TFAE.
BE(K, 00): T(P:f) < e7?X*P,T'(f)

Kuwada: Wa(Pyu, Piv) < e Kt Wy (u,v)

CD(K,00): Enty(us) < (1 — $)Entm (o) + s Entm (1) — %s(l — 8) W2 (10, 111)

d W2(Puu, v
EVIFC&%

K
+ 5 W2(Pyu,v) + Ent(Pyu) < Ent(v)
Here EVIx stands for Evolution Variational Inequality and encodes the fact that the
heat flow is the metric gradient flow of the entropy in the Wasserstein space.
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What happens in the Heisenberg group? [ /2]

On the manifold R? consider the non-commutative group operation

[p.q: (xvyaz).(xl7y/7zl): ($+x’,y+y',z—|—z'—|—%(a:y’—yx’)).]

The resulting Lie group (R?, e) = H* is the (first) Heisenberg group.

There is a family of dilations: [6 A(p) = Az, Ay, )\22)} for A > 0.

The Haar measure is the Lebesgue measure | 3 = dr dy dz.

The tangent space is spanned by

[X -8, — gaz, Y =0, + gaz, Z =[X,Y] :az.J

We want to move only along the horizontal generators X, Y, so we define

1
[dcc(iﬂ, q) =inf {/0 Vsl ds :v0 =p, 1 =4q, s € Span{X%,Y%}}]

The function dec is the Carnot-Carathéodory (CC) distance [Chow - Rashevskii].
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What happens in the Heisenberg group? [2/2]
The (sub-)Laplacian in H! is

(Am = X2 +Y?)
which is only hypoelliptic: the heat kernel p, of 9; — Ag: is smooth [Hormander].
In H* the solution of the (sub-elliptic) heat equation
{atft =Agify ONR3 x (0, 400)
fo=1f on R3
is thus given by group convolution as

P.f(p) = p,x f(p) :/

R3

pi(q~'p) f(q)dg = /

R

_Pi(a) flpa™) dq}

The horizontal gradient m is only left-invariant, so we are in troubles:
Vi (Pef) = Vi (py * f) = (Vipy) * f # py * (Vi f) = Po(Vi f).
Theorem (guillet, 2009)
The metric-measure space (H!,dcc,-#£2) is NOT CD(K, c0)!
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The dark side of non-CD(K, 0o) spaces, part |: Carnot groups
A Carnot group G is a connected, simply connected, stratified Lie group with
(Le@©) =0V -0V, Vi=[Vial, [14,Vd={0}]
The horizontal directions V4 = span{ Xy, ..., X,,}, m € N, provide
[VGf =2 (X5 0)X; ] and [AG =2 X5 ]

One can identify G ~ (R™, o) with Haar measure the Lebesgue measure £™.
We want to move only along V4, so the Carnot-Carathéodory distance is

1
[dCC(xvy) = inf{/ Fslleds: vo=2 1=y Y€ Vl}j
0

The space (G, de, ™) is Polish, geodesic and (£ (Bec(x, 7)) = €12 ] Q € N

Example: for H' itis k = 2, Vi = span{X, Y}, Vo = span{Z}, Q = 4.

Theorem (Ambrosio - S, 2018)
The metric-measure space (G, dec, £™) is NOT CD(K, 00)!
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The dark side of non-CD(K, o) spaces, part II: the SU(2) group

SU(2) = Lie group of 2 x 2 complex unitary matrices with determinant 1.
Lie algebra su(2) = 2 x 2 complex unitary skew-Hermitian matrices with trace 0.
A basis of su(2) is given by the Pauli matrices
X=(%5), Y=08), 2=(%), ieC
satisfying the relations
([X.¥]=22z, [v,Z]=2X, [ZX]=2Y]

Similarly as before, the horizontal generators X, Y provide and

[Vsm(z)f = (X)X + (Yf)YJ and [ASIU(Q) =X +Y2-J

Using the cylindric coordinates (for r € [0, %), 9 € [0,27] and ¢ € [—n,7])

(r,9,2) — exp(rcosd X 4+ rsindY) exp(¢ Z) = ( ereoosr el O Si’”),

—e =D sinr e ¥ cosr

the Haar measure m € &2(SU(2)) can be written as [ dm = 25 sin(2r) drdy d¢. J

The space (SU(2),dcc, m) is Polish, geodesic and compact.

5127



Why Carnot groups and SU(2) are interesting?

Theorem (Driver - Melcher, 2005)
There exists Cgn > 1 such that TH' (P, f) < C2,P,TH'(f).

This is much weaker than usual BE, because we lose information at ¢ = 0!

Theorem (Melcher, 2008)
Let G be a Carnot group. There exists Cg > 1 such that T¢(P,f) < CZ P.I'®(f).

Remark: Cg =1 <= G is commutative [Ambrosio-S., 2018].

Theorem (Baudoin - Bonnefont, 2008)
There exists Csy(z)> V2 such that TSYG) (P, f) < CZy e~ P.ISVA)(f).

QUESTION: can we extend the equivalence

BE < Kuwada <= CD <= EVI
also to Carnot groups and SU(2)?
NOTE: [Kuwada, 2009] already gives BE <= W,-contraction.
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We do not need smoothness: admissible metric-measure groups

Assume (X, d, m) has Ch quadratic.

Definition (Admissible group)
(X,d, m) is an admissible metric-measure group if:
o the metric space (X,d) is locally compact;

o the set X is a topological group, ie. (z,y) — zy and z — x~! are continuous;
o d is left-invariant, ie. d(zx, 2zy) = d(z,y) for all z,y, z € X;

e m is a left-invariant Haar measure, ie. m is a Radon measure such that
m(zE) = m(E) for all z € X and all Borel set E C X;

e X is unimodular, ie. m is also right-invariant.

REMARK: Carnot groups and SU(2) ARE admissible metric-measure groups.
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Main result

Let c: [0, +00) — (0, +00) be such that ¢,c=t € L>([0,77) for all T' > 0.
IDEA: c is a 'curvature function' and generalizes the usual ¢ s e~ %1
Examples: c(t) = Cg for Carnot groups and c(t) = Csyye 2" for SU(2).

Define R(a, b) = fc*2 ds for 0 < a <b.

Theorem (S, 2020)

Let (X, d, m) be an admissible group + some technical hypotheses. TFAE.:
BE,: T(P.f) < c2(t) PiT(f)

Kuwada: Wa(Pyp, Pev) < c(t) Wa(u, v)

CDy: Enty(Pyanpts) < (1 — 8) Enty (Pypio) + s Enty (Pepen)

s(1—s) 1 ) -
v 2h <R(t1.+ h) W2 (NO?Nl) W2 (Pt,u'O,Pt,ul)

fort > 0and h > 0, with s — p, a (1-speed) Wo-geodesic

1
EVly: W3 (Py, 11, Peopio) — Rlio 1) W3 (1, po)

<2t — to)(Entm(Ptopo) - Entm(Pt1u1)> for 0 <ty <t
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Comments

CDw: Entm(Pt—i-h,us) < (1 - 5) Entm(PtUO) + s Entm(Pt,ul)
+s(12;s) (m W3 (o, 1) — W3 (Pepao, Ptul))
fort>0andh >0

wt WPy i1, Poyjio) — “:50) < 2(t — to) (Entm(Pay o) — Entm(Pra 1))
for 0 <t <t

. The equivalence BE,, <= Kuwada is known, see [Kuwada, 2009] and [Ambrosio
- Gigli - Savareé, 2015], but we (re)do the proof because of some technical issues.
2.1t = 0in CD,, then Enty (Ppps) < (1 — 8) Entyy, (o) + s Entin (1)

+ 400 51 — ) W2(p0, 1) with A(h) = 2O "L for y > 0,
3.CD,, = Kuwada is easy: multiply by h > 0 and then send h — 0.
4.EVI,, = CD,, follows from a general argument, see [Daneri - Savaré, 2008].

5. We only need to prove BE,, = EVI,,. The proof is an adaptation of [Ambrosio
- Gigli - Savaré, 2015] and [Erbar - Kuwada - Sturm, 2015].
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Other comments and futurama

CDy: Entm(PtJrh,us) < (1 - S) Entm(Pt/A()) + s Entm(Ptul)
+S(12;5) (m W3 (1o, 1) — W3 (Pe o, Pt,ul))
fort>0andh >0

2]
EVI: WE(Pay i1, Pgjio) — ") < 2(t — to) (Entm(Pag o) — Entm (Pry 1))
for0 <ty <t

. We need the group structure of X to exploit the de-singularization property of the
convolution: g » p < m. Can we avoid this assumption? Example: metric graphs.

Note: BE,, = P;u < m, but the Wy-metric velocity of s — u! = P.u, cannot be
related to the one of s +— s if ¢(0+) > 1. Examples: Carnot groups and SU(2)!

2. Consider a sub-Riemannian manifold M (possibly, without a group structure). Is
there a BE,, inequality also encoding information about the dimension of M?

3. RCD(K, c0) and EVIg imply several nice properties about (X,d, m) (MCP,
gradient flows, m-GH stability,..). What can we deduce from RCD,, and EVI,,?

4. Wa-contractions are also known for Markovian diffusion semigroup associated
to L = A+ Z with Z € C' on (M, g). Can we extend the result to this case?

20127



Proof of BE,, = EVI,, [1/6]

Let s € [0,1] and assume is joining 10, 11 € P2(X).

Define a new curve s — fis = fom as

[ fis = Pn(s)ﬂﬂ(s)|] so that [ fo= Pn(s)fﬂ(s).]

where i € C*(]0,1]; [0, +00)) and ¢ € C'([0, 1]; [0, 1]) with 9(0) = 0 and ¥(1) = 1.

At least formally, we can compute

d. . .
[ds fs = 1(8) APy focs) +9(8) Pys) focs) ’

for s € (0,1).
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Proof of BE,, = EVI,, [2/6]

d. - -
[d@ fs = 77(3) APn(s)fﬂ(s) + 19(8) Pn(s)f&(s)

On the one hand, integrating by parts, we have

d
& Entm (/i =% /fs log f, dm

= / (1 +[09fs) CTfs dm
X S
—= () [ FEITGE)dn+96) [ D7) Py foce dm
X X
for s € (0,1), where for all » > 0.
Since p'(r) = r(p'(r))?, by the chain rule T(p(f)) = (&' (f))?> T(f) we can write

d B ) ~ . .
5 Entm(7e) = i(5) | T(00) i+ 35) [ fore)Pyioygscn

X

for s € (0,1), where m for brevity.
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Proof of BE, = EVI,, [2/6]

On the other hand, by Kantorovich duality, we have

%W;(,u, v)= sup{/ Qrpdu — / @ dv : ¢ € Lip(X) with bounded support},
X X

where
. d?
[st@(l‘) = int () + L ”"’)}

for z € X and s > 0, is the Hopf-Lax infimum-convolution semigroup.

Note that ¢, = Q. solves the Hamilton-gacobi equation [5‘8903 + 1D, 2 = o.]
Again integrating by parts, we can compute

d

—/ @sfsdmz/ Os@sdﬂﬁ/ %Efsdm
dS X X X dS
1 _
5 [ Tt g~ i) [ T(ei)dm
X X

‘Hé(s)/xfﬁ(s) Poy(s) s dm.
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Proof of BE,, = EVI,, [4/6]

Combining the above inequalities, we get
d = .. d 1 : _
q. / Ps fs dm + 77( ) Entm( 9) S S / (F(QDS) + 77(5)2 F(gs)) dﬂs

7ﬁ(s)/){r((psafs)dm+19(s)/ fﬂ(s) Pn(s)((ps+h(3)gs)dm

for s € (0,1), forgetting the term —252° [ T(g,) djis < 0.
Now by non-smooth Calculus (since r p/(r) = 1)
L(ps +1(5) g5) = T(s) + 211(s) T (05, g5) +11(5)* T(gs),
T(ps, gs) = T(s, p(fs) = D' (fo) T(ps, f5),
D5, 9s) fs = 7' (f) Ts, f5) = Tps, f),

and thus
d ~ . d 1 . 5
—/@sfsderﬂ() Enty (7 )S——/F(%Jrn(S)gs)dus

Y S) /X fﬁ(s) Pn(s)(SOS + 77(8) gs) dm.
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Proof of BE,, = EVI,, [5/6]

At this point, the crucial information we need on s — ps = fsm is that [Lisini]

/fsz/}dmﬁ |f1s] (/ F(w)dus>2 (Lisini)
X X

for all 'nice' functions 1, where

W2 (Ms+ha Ms)
h

is the metric velocity of the curve s — s with respect to the Wasserstein distance.
We hence may choose ¢ = P, () (s +1(s) gs) and estimate

. . d
39 [ oo P (e 4 i66) )8 = [ (5 foco ) Pl + (9 5:)

(Lisini)

219 1o ( [ @y e+ i) 900 dus>

2 @ D(s)? (s |* + w /X T(Pyy(s) (s +7(5) g5)) dpss

(BEw) 2 - 1 . _
< e (2(5)) () o * + 5 /}(F(¢s+n(5)gs)dus-

1s| = lim
|fs] im

2

25/27



Proof of BE,, = EVI, [6/6]

By combining the above inequalities, we conclude that

R e

for s € (0,1).

Choose [19(5) = c*z(n(s))] and integrate, so that, by Kantorovich duality, we get

1 .
S Wz( n()H1, Phoyto) — R W3 (11, o) + 7(1) Entey (Pyy1y 1)
1
< 77(0) Entm(Pn(O)HO) —|—/ 77(8) Entm(Pn(S)uﬁ(s)) dS,
0

1
where R(n) = /0 c2(n(s))ds.

No information on Enty, (P, 19) = choose [n(s) =(1—-s)tp+ stlj = EVI,,.
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THANK YOU FOR YOUR ATTENTION!
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