Bakry-Émery curvature condition and entropic inequalities on metric-measure groups

Giorgio Stefani

SISSA

Analysis Junior Seminar SISSA, IO June 2022
G. Stefani, Generalized Bakry-Émery curvature condition and equivalent entropic inequalities in groups, J. Geom. Anal. 32 (2022), no. 4, 136. Preprint available at arXiv:2008.13731.

Warm-up in \mathbb{R}^{N}

$\ln \mathbb{R}^{N}$ the solution of the heat equation

$$
\begin{cases}\partial_{t} f_{t}=\Delta f_{t} & \text { on } \mathbb{R}^{N} \times(0,+\infty) \\ f_{0}=f & \text { on } \mathbb{R}^{N}\end{cases}
$$

is given by convolution as $\mathrm{P}_{t} f=\mathrm{p}_{t} * f$, where

$$
\mathrm{p}_{t}(x)=\frac{1}{(4 \pi t)^{N / 2}} e^{-\frac{|x|^{2}}{4 t}}, \quad x \in \mathbb{R}^{N}, t>0
$$

is the heat kernel.
Hence we have $\nabla \mathrm{P}_{t} f=\mathrm{p}_{t} *(\nabla f)=\mathrm{P}_{t} \nabla f$, so that

$$
\Gamma\left(\mathrm{P}_{t} f\right)=\left|\nabla \mathrm{P}_{t} f\right|^{2}=\left|\mathrm{P}_{t} \nabla f\right|^{2} \leq \mathrm{P}_{t}\left(|\nabla f|^{2}\right)=\mathrm{P}_{t} \Gamma(f)
$$

by Jensen's inequality, since p_{t} is a probability measure. Thus

$$
\Gamma\left(\mathrm{P}_{t} f\right) \leq \mathrm{P}_{t} \Gamma(f)
$$

for all $t>0$ and f sufficiently regular.

What happens in a Riemannian manifold? [/ 2]

Let (\mathbb{M}, g) be a smooth Riemannian manifold with Laplace-Beltrami operator Δ.
The heat flow $f_{t}=\mathrm{P}_{t} f$ starting from a datum f is associated to $\partial_{t}-\Delta$ as before.
Define $\varphi(s)=\mathrm{P}_{s} \Gamma\left(\mathrm{P}_{t-s} f\right)$ for $s \in[0, t]$ and $t>0$, so that

$$
\mathrm{P}_{t} \Gamma(f)-\Gamma\left(\mathrm{P}_{t} f\right)=\varphi(t)-\varphi(0)=\int_{0}^{t} \varphi^{\prime}(s) d s
$$

One can check that

$$
\varphi^{\prime}(s)=2 \mathrm{P}_{s} \Gamma_{2}\left(\mathrm{P}_{t-s} f\right)
$$

where

$$
\Gamma(f, g)=\langle\nabla f, \nabla g\rangle_{9}, \quad \Gamma_{2}(f, g)=\frac{1}{2}(\Delta \Gamma(f, g)-\Gamma(\Delta f, g)-\Gamma(f, \Delta g))
$$

The geometric meaning of Γ_{2} is

$$
\Gamma_{2}(f)=\|\operatorname{Hess} f\|_{2}^{2}+\operatorname{Ric}(\nabla f, \nabla f),
$$

where Ric (\cdot, \cdot) is the Ricci tensor on (\mathbb{M}, g).

What happens in a Riemannian manifold? [2/2]

Let us assume that, for some $K \in \mathbb{R}$,

$$
\operatorname{Ric}(v, v) \geq K|v|_{g^{\prime}}^{2}
$$

so that

$$
\Gamma_{2}(f)=\|\operatorname{Hess} f\|_{2}^{2}+\operatorname{Ric}(\nabla f, \nabla f) \geq K \Gamma(f)
$$

Consequently $\varphi^{\prime}(s)=2 \mathrm{P}_{s} \Gamma_{2}\left(\mathrm{P}_{t-s} f\right) \geq 2 K \mathrm{P}_{s} \Gamma\left(\mathrm{P}_{t-s} f\right)=2 K \varphi(s)$ and thus, by Grönwall inequality,

$$
\text { Ric } \geq K \Longrightarrow \Gamma\left(\mathrm{P}_{t} f\right) \leq e^{-2 K t} \mathrm{P}_{t} \Gamma(f)
$$

the Bakry-Émery-Ledoux pointwise gradient estimate for the heat flow.
If $\mathbb{M}=\mathbb{R}^{N}$, then $K=0$ and we recover the Euclidean case.
To consider $N=\operatorname{dim} \mathbb{M}$ observe that $\|H e s s f\|_{2}^{2} \geq \frac{1}{N}(\Delta f)^{2}$ [Wang, 20।I].
Surprisingly, we have an equivalence:

$$
\mathrm{CD}(K, N): \text { Ric } \geq K, \operatorname{dim} \mathbb{M} \leq N \Longleftrightarrow \Gamma_{2}(f) \geq \frac{1}{N}(\Delta f)^{2}+K \Gamma(f),
$$

the Bakry-Émery curvature-dimension inequality (we will consider $N=\infty$ only).

Another equivalence via Wasserstein distance

 We see (\mathbb{M}, g) as a metric space $(X, \mathrm{~d})$ with $X=\mathbb{M}$ and $\mathrm{d}=\mathrm{d}_{\mathrm{g}}$.Theorem (von Renesse - Sturm, 2005)

$$
\text { Ric } \geq K \Longleftrightarrow W_{2}\left(\mathrm{P}_{t} \mu, \mathrm{P}_{t} \nu\right) \leq e^{-K t} W_{2}(\mu, \nu) \text { for all } \mu, \nu \in \mathscr{P}_{2}(\mathbb{M})
$$

Here $\left(\mathscr{P}_{2}(X), W_{2}\right)$ is the Wasserstein metric space, where

$$
\mathscr{P}_{2}(X)=\left\{\mu \in \mathscr{P}(X): \int_{X} \mathrm{~d}\left(x, x_{0}\right)^{2} \mathrm{~d} \mu(x)<+\infty, x_{0} \in X\right\}
$$

and

$$
W_{2}^{2}(\mu, \nu)=\inf \left\{\int_{X \times X} \mathrm{~d}^{2}(x, y) \mathrm{d} \pi: \pi(x, y) \in \operatorname{Plan}(\mu, \nu)\right\},
$$

with

$$
\operatorname{Plan}(\mu, \nu)=\left\{\pi \in \mathscr{P}(X \times X):\left(p_{1}\right)_{\#} \pi=\mu,\left(p_{2}\right)_{\#} \pi=\nu\right\} .
$$

Important fact:

$$
(X, \mathrm{~d}) \text { Polish (geodesic) } \Longrightarrow\left(\mathscr{P}_{2}(X), W_{2}\right) \text { Polish (geodesic). }
$$

Another equivalence via Boltzmann entropy

As before, we see $(X, \mathrm{~d}, \mathfrak{m})=\left(\mathbb{M}, g, V \mathrm{ll}_{\mathrm{g}}\right)$ as a metric-measure space.
Theorem (von Renesse - Sturm, 2005)
$\operatorname{Ric} \geq K \Longleftrightarrow \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{s}\right) \leq(1-s) \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{1}\right)-\frac{K}{2} s(1-s) W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)$
where $s \mapsto \mu_{s}$ is any (1-speed) W_{2}-geodesic joining $\mu_{0}, \mu_{1} \in \operatorname{Dom}\left(\right.$ Ent $\left._{\mathfrak{m}}\right)$.
Here $\mathrm{Ent}_{\mathfrak{m}}: \mathscr{P}_{2}(X) \rightarrow(-\infty,+\infty]$ is the (Boltzmann) entropy

$$
\operatorname{Ent}_{\mathfrak{m}}(\mu)=\int_{X} \varrho \log \varrho \mathrm{dm}
$$

for $\mu=\varrho \mathfrak{m} \in \mathscr{P}_{2}(X)$, with $\operatorname{Ent}_{\mathfrak{m}}(\mu)=+\infty$ if $\mu k \mathfrak{m}$.
NOTE: We want $\operatorname{Ent}(\mu)>-\infty$ for all $\mu \in \mathscr{P}_{2}(X)$, but this is OK whenever

$$
\exists x_{0} \in X \quad \exists A, B>0 \quad: \quad \mathfrak{m}\left(B_{r}\left(x_{0}\right)\right) \leq A \exp \left(B r^{2}\right) \quad \text { (exp.ball) }
$$

Bishop volume comparison: $(X, \mathrm{~d}, \mathfrak{m})=(\mathbb{M}, \mathrm{g}$, Volg $)$ with $\mathrm{Ric} \geq K \Longrightarrow$ (exp.ball).

To be or not to be... smooth: the birth of $\mathrm{CD}(K, \infty)$ spaces
On a smooth Riemannian manifold (\mathbb{M}, g) we know that
(I) Ric $\geq K$
(2) $\Gamma\left(\mathrm{P}_{t}\right) \leq e^{-2 K t} \mathrm{P}_{t} \Gamma$
(3) $W_{2}\left(\mathrm{P}_{t}, \mathrm{P}_{t}\right) \leq e^{-K t} W_{2}$
(4) $\mathrm{Ent}_{\mathfrak{m}}$ is W_{2}-geodesic K-convex are equivalent, but (4) only need d and \mathfrak{m}, not the smoothness of (\mathbb{M}, g), hence making sense in metric-measure spaces.

Lott - Villani, Sturm

Definition: $(X, \mathrm{~d}, \mathfrak{m})$ is a $\mathrm{CD}(K, \infty)$ space if $\mathrm{Ent}_{\mathfrak{m}}$ is W_{2}-geodesic K-convex
Natural questions:
What about (2) and (3)?
Can the heat flow be defined in a metric-measure space?

Some like it hot... and non-smooth

In a metric-measure space $(X, \mathrm{~d}, \mathfrak{m})$, the Cheeger energy is

$$
\operatorname{Ch}(f)=\inf \left\{\liminf _{n} \int_{X}\left|\mathrm{D} f_{n}\right|^{2} \mathrm{dm}: f_{n} \rightarrow f \text { in } L^{2}(X, \mathfrak{m}), f_{n} \in \operatorname{Lip}(X)\right\}
$$

where $|D f|(x)=\limsup _{y \rightarrow x} \frac{|f(y)-f(x)|}{\mathrm{d}(x, y)}$ stands for the slope of $f: X \rightarrow \mathbb{R}$.
Ch is convex, l.s.c. and its domain $W^{1,2}(X, \mathrm{~d}, \mathfrak{m})$ is dense in $L^{2}(X, \mathfrak{m})$
We can define the heat flow as the (Hilbertian) gradient flow of Ch in $L^{2}(X, \mathfrak{m})$:

$$
\mathrm{P}_{t} f \underset{t \rightarrow 0^{+}}{\longrightarrow} f \text { in }\left\llcorner^{2}(X, \mathfrak{m}) \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{P}_{t} f \in-\partial^{-} \mathrm{Ch}\left(\mathrm{P}_{t} f\right) \text { for a.e. } t>0 .\right.
$$

The Laplacian $-\Delta_{\mathrm{d}, \mathfrak{m}} f \in \partial^{-} \mathrm{Ch}(f)$ is the element of minimal $\left\llcorner^{2}(X, \mathfrak{m})\right.$-norm. CAUTION: $W^{1,2}(X, \mathrm{~d}, \mathfrak{m})$ with $\|\cdot\|_{W^{1}, 2}=\sqrt{\|\cdot\|_{L^{2}}^{2}+\mathrm{Ch}(\cdot)}$ may be NOT Hilbert! Example: consider $\left(\mathbb{R}^{n},\|\cdot\|_{p}, \mathscr{L}^{n}\right)$ for $p \neq 2$.

Non-smooth Calculus after Ambrosio - Gigli - Savaré

Any $f \in \mathrm{~W}^{1,2}(X, \mathrm{~d}, \mathfrak{m})$ has a (unique) weak gradient

$$
|\mathrm{D} f|_{w} \in \mathrm{~L}^{2}(X, \mathfrak{m})
$$

such that

$$
\mathrm{Ch}(f)=\frac{1}{2} \int_{X}|\mathrm{D} f|_{w}^{2} \mathrm{dm} .
$$

The weak gradient $|\mathrm{Df}|_{w}$ behaves like the 'modulus of the gradient' and one can develop Calculus rules in a non-smooth setting:

- locality: $|\mathrm{D} f|_{w}=|\mathrm{D} g|_{w}$ m-a.e. on $\{f-g=c\}$;
- Leibniz rule: $|\mathrm{D}(f g)|_{w} \leq|f||\mathrm{D} g|_{w}+|\mathrm{D} f|_{w}|g|_{\text {; }}$
- chain rule: $\varphi \in \operatorname{Lip}(\mathbb{R}) \Longrightarrow|D \varphi(f)|_{w} \leq\left|\varphi^{\prime}(f)\right||\operatorname{D} f|_{w}$.

Quadratic Cheeger energy

 We say that Ch is quadratic if it satisfies the parallelogram law$$
\mathrm{Ch}(f+g)+\mathrm{Ch}(f-g)=2 \mathrm{Ch}(f)+2 \mathrm{Ch}(g)
$$

We assume that Ch is quadratic, so that

$$
W^{1,2}(X, \mathrm{~d}, \mathfrak{m}) \text { is Hilbert, } \mathrm{P}_{t} \text { is linear, } \quad \Gamma(f)=|\mathrm{D} f|_{w}^{2} \text { is quadratic. }
$$

By polarization, we can define

$$
\Gamma(f, g)=|\mathrm{D}(f+g)|_{w}^{2}-|\mathrm{D} f|_{w}^{2}-|\mathrm{D} g|_{w}^{2}
$$

as the 'scalar product of gradients':

- Leibniz rule: $\Gamma(f g, h)=g \Gamma(f, h)+f \Gamma(g, h)_{\text {; }}$
- chain rule: $\Gamma(\varphi(f), g)=\varphi^{\prime}(f) \Gamma(f, g)$;
- integration-by-parts: $\int_{X} \Gamma(f, g) \mathrm{dm}=-\int_{X} g \Delta_{\mathrm{d}, \mathfrak{m}} f \mathrm{dm}_{\mathrm{i}}$
- Laplacian chain rule: $\Delta_{\mathrm{d}, \mathfrak{m}}(\varphi \circ f)=\varphi^{\prime}(f) \Delta_{\mathrm{d}, \mathfrak{m}} f+\varphi^{\prime \prime}(f) \Gamma(f)$.

The bright side of $\mathrm{RCD}(K, \infty)$ spaces
IDEA: reinforce CD restricting to Riemannian-like metric-measure spaces only.

Ambrosio - Gigli - Savaré

Definition: $(X, \mathrm{~d}, \mathfrak{m})$ is $\mathrm{RCD}(K, \infty)$ if it is $\mathrm{CD}(K, \infty)$ and Ch is quadratic

Theorem (many people...)
Assume ($X, \mathrm{~d}, \mathfrak{m}$) has a quadratic Ch . TFAE:
$\mathrm{BE}(K, \infty): \Gamma\left(\mathrm{P}_{t} f\right) \leq e^{-2 K t} \mathrm{P}_{t} \Gamma(f)$
Kuwada: $W_{2}\left(\mathrm{P}_{t} \mu, \mathrm{P}_{t} \nu\right) \leq e^{-K t} W_{2}(\mu, \nu)$
$\mathrm{CD}(K, \infty): \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{s}\right) \leq(1-s) \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{1}\right)-\frac{K}{2} s(1-s) W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)$
$\mathrm{EVI}_{K}: \frac{\mathrm{d}}{\mathrm{d} t} \frac{W_{2}^{2}\left(\mathrm{P}_{t} \mu, \nu\right)}{2}+\frac{K}{2} W_{2}^{2}\left(\mathrm{P}_{t} \mu, \nu\right)+\operatorname{Ent}\left(\mathrm{P}_{t} \mu\right) \leq \operatorname{Ent}(\nu)$
Here EVI_{K} stands for Evolution Variational Inequality and encodes the fact that the heat flow is the metric gradient flow of the entropy in the Wasserstein space.

What happens in the Heisenberg group? [//2]
On the manifold \mathbb{R}^{3} consider the non-commutative group operation

$$
p \bullet q=(x, y, z) \bullet\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-y x^{\prime}\right)\right) .
$$

The resulting Lie group $\left(\mathbb{R}^{3}, \bullet\right) \equiv \mathbb{H}^{1}$ is the (first) Heisenberg group.
There is a family of dilations: $\delta_{\lambda}(p)=\left(\lambda x, \lambda y, \lambda^{2} z\right)$ for $\lambda>0$.
The Haar measure is the Lebesgue measure $\mathscr{L}^{3}=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$.
The tangent space is spanned by

$$
X=\partial_{x}-\frac{y}{2} \partial_{z}, \quad Y=\partial_{y}+\frac{x}{2} \partial_{z}, \quad Z=[X, Y]=\partial_{z} .
$$

We want to move only along the horizontal generators X, Y, so we define

$$
\mathrm{d}_{C C}(p, q)=\inf \left\{\int_{0}^{1}\left\|\dot{\gamma}_{s}\right\|_{\mathbb{H}^{1}} \mathrm{~d} s: \gamma_{0}=p, \gamma_{1}=q, \dot{\gamma}_{s} \in \operatorname{span}\left\{X_{\gamma_{s}}, Y_{\gamma_{s}}\right\}\right\}
$$

The function d_{CC} is the Carnot-Carathéodory (CC) distance [Chow - Rashevskii].

What happens in the Heisenberg group? [2/2]
The (sub-)Laplacian in \mathbb{H}^{1} is

$$
\Delta_{\mathbb{H}^{1}}=X^{2}+Y^{2},
$$

which is only hypoelliptic: the heat kernel p_{t} of $\partial_{t}-\Delta_{\mathbb{H}^{1}}$ is smooth [Hörmander].
In \mathbb{H}^{1} the solution of the (sub-elliptic) heat equation

$$
\begin{cases}\partial_{t} f_{t}=\Delta_{\mathbb{H}^{1}} f_{t} & \text { on } \mathbb{R}^{3} \times(0,+\infty) \\ f_{0}=f & \text { on } \mathbb{R}^{3}\end{cases}
$$

is thus given by group convolution as

$$
\mathrm{P}_{t} f(p)=\mathrm{p}_{t} \star f(p)=\int_{\mathbb{R}^{3}} \mathrm{p}_{t}\left(q^{-1} p\right) f(q) \mathrm{d} q=\int_{\mathbb{R}^{3}} \mathrm{p}_{t}(q) f\left(p q^{-1}\right) \mathrm{d} q .
$$

The horizontal gradient $\nabla_{\mathbb{H}^{1}}=(X, Y)$ is only left-invariant, so we are in troubles:

$$
\nabla_{\mathbb{H}^{1}}\left(\mathrm{P}_{t} f\right)=\nabla_{\mathbb{H}^{1}}\left(\mathrm{p}_{t} \star f\right)=\left(\nabla_{\mathbb{H}^{1}} \mathrm{p}_{t}\right) \star f \neq \mathrm{p}_{t} \star\left(\nabla_{\mathbb{H}^{1}} f\right)=\mathrm{P}_{t}\left(\nabla_{\mathbb{H}^{1}} f\right) .
$$

Theorem (Juillet, 2009)

The metric-measure space $\left(\mathbb{H}^{1}, \mathrm{~d}_{\mathrm{Cc}}, \mathscr{L}^{3}\right)$ is NOT $\mathrm{CD}(K, \infty)$!

The dark side of non-CD (K, ∞) spaces, part I: Carnot groups A Carnot group \mathbb{G} is a connected, simply connected, stratified Lie group with

$$
\operatorname{Lie}(\mathbb{G})=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{\kappa}, \quad V_{i}=\left[V_{1}, V_{i-1}\right], \quad\left[V_{1}, V_{\kappa}\right]=\{0\} .
$$

The horizontal directions $V_{1}=\operatorname{span}\left\{X_{1}, \ldots, X_{m}\right\}, m \in \mathbb{N}$, provide

$$
\nabla_{\mathbb{G}} f=\sum_{j=1}^{m}\left(X_{j} f\right) X_{j} \quad \text { and } \quad \Delta_{\mathbb{G}}=\sum_{j=1}^{m} X_{j}^{2} .
$$

One can identify $\mathbb{G} \sim\left(\mathbb{R}^{n}, \bullet\right)$ with Haar measure the Lebesgue measure \mathscr{L}^{n}. We want to move only along V_{1}, so the Carnot-Carathéodory distance is

$$
\mathrm{d}_{C C}(x, y)=\inf \left\{\int_{0}^{1}\left\|\dot{\gamma}_{s}\right\|_{\mathbb{G}} d s: \gamma_{0}=x, \gamma_{1}=y, \dot{\gamma}_{t} \in V_{1}\right\} .
$$

The space $\left(\mathbb{G}, \mathrm{d}_{\mathrm{cc}}, \mathscr{L}^{n}\right)$ is Polish, geodesic and $\mathscr{L}^{n}\left(\mathrm{~B}_{\mathrm{CC}}(x, r)\right)=C r^{Q}, Q \in \mathbb{N}$.
Example: for \mathbb{H}^{1} it is $\kappa=2, V_{1}=\operatorname{span}\{X, Y\}, V_{2}=\operatorname{span}\{Z\}, Q=4$.
Theorem (Ambrosio-S., 2018)
The metric-measure space $\left(\mathbb{G}, \mathrm{d}_{\mathrm{CC}}, \mathscr{L}^{n}\right)$ is $\operatorname{NOT} \mathrm{CD}(K, \infty)$!

The dark side of non-CD (K, ∞) spaces, part II: the $\mathbb{S U}(2)$ group

 $\mathbb{S U}(2)=$ Lie group of 2×2 complex unitary matrices with determinant 1 . Lie algebra $\mathfrak{s u}(2)=2 \times 2$ complex unitary skew-Hermitian matrices with trace 0 . A basis of $\mathfrak{s u}(2)$ is given by the Pauli matrices$$
X=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad i \in \mathbb{C},
$$

satisfying the relations

$$
[X, Y]=2 Z, \quad[Y, Z]=2 X, \quad[Z, X]=2 Y
$$

Similarly as before, the horizontal generators X, Y provide $\overline{\mathrm{d}_{\mathrm{CC}}}$ and

$$
\nabla_{\mathbb{S U}(2)} f=(X f) X+(Y f) Y \quad \text { and } \quad \Delta_{\mathrm{SU}(2)}=X^{2}+Y^{2} .
$$

Using the cylindric coordinates (for $r \in\left[0, \frac{\pi}{2}\right), \vartheta \in[0,2 \pi]$ and $\zeta \in[-\pi, \pi]$)

$$
(r, \vartheta, z) \mapsto \exp (r \cos \vartheta X+r \sin \vartheta Y) \exp (\zeta Z)=\left(\begin{array}{c}
\left.e^{i \zeta \cos r} \begin{array}{c}
i(\vartheta-\zeta) \\
-e^{-i(\vartheta-\zeta)} \sin r \\
e^{-i \zeta} \cos r
\end{array}\right), ~, ~
\end{array}\right.
$$

the Haar measure $\mathfrak{m} \in \mathscr{P}(\mathbb{S U}(2))$ can be written as $d \mathfrak{m}=\frac{1}{4 \pi^{2}} \sin (2 r) \mathrm{d} r \mathrm{~d} \vartheta \mathrm{~d} \zeta$.
The space $\left(\mathbb{S U}(2), \mathrm{d}_{\mathrm{Cc}}, \mathfrak{m}\right)$ is Polish, geodesic and compact.

Why Carnot groups and $\operatorname{SU}(2)$ are interesting?
Theorem (Driver - Melcher, 2005)
There exists $C_{\mathbb{H}^{1}}>1$ such that $\Gamma^{\mathbb{H}^{1}}\left(\mathrm{P}_{t} f\right) \leq C_{\mathbb{H}^{1}}^{2} \mathrm{P}_{t} \Gamma^{\mathbb{H}^{1}}(f)$.
This is much weaker than usual BE , because we lose information at $t=0$!
Theorem (Melcher, 2008)
Let \mathbb{G} be a Carnot group. There exists $C_{\mathbb{G}} \geq 1$ such that $\Gamma^{\mathbb{G}}\left(\mathrm{P}_{t} f\right) \leq C_{\mathbb{G}}^{2} \mathrm{P}_{t} \Gamma^{\mathbb{G}}(f)$. Remark: $C_{\mathbb{G}}=1 \Longleftrightarrow \mathbb{G}$ is commutative [Ambrosio-S., 20 I8].

Theorem (Baudoin - Bonnefont, 2008)
There exists $C_{\mathbb{S U}(2)} \geq \sqrt{2}$ such that $\Gamma^{\mathbb{S U}(2)}\left(\mathrm{P}_{t} f\right) \leq C_{\mathbb{S U}(2)}^{2} e^{-4 t} \mathrm{P}_{t} \Gamma^{\operatorname{SU}(2)}(f)$.
QUESTION: can we extend the equivalence
$\mathrm{BE} \Longleftrightarrow$ Kuwada $\Longleftrightarrow \mathrm{CD} \Longleftrightarrow \mathrm{EVI}$
also to Carnot groups and $\mathbb{S U}(2)$?
NOTE: [Kuwada, 2009] already gives BE $\Longleftrightarrow W_{2}$-contraction.

We do not need smoothness: admissible metric-measure groups

Assume ($X, \mathrm{~d}, \mathfrak{m}$) has Ch quadratic.

Definition (Admissible group)
($X, \mathrm{~d}, \mathfrak{m}$) is an admissible metric-measure group if:

- the metric space ($X, \mathrm{~d}$) is locally compact;
- the set X is a topological group, i.e. $(x, y) \mapsto x y$ and $x \mapsto x^{-1}$ are continuous;
- d is left-invariant, i.e. $\mathrm{d}(z x, z y)=\mathrm{d}(x, y)$ for all $x, y, z \in X$;
- \mathfrak{m} is a left-invariant Haar measure, i.e. \mathfrak{m} is a Radon measure such that $\mathfrak{m}(x E)=\mathfrak{m}(E)$ for all $x \in X$ and all Borel set $E \subset X$;
- X is unimodular, i.e. \mathfrak{m} is also right-invariant.

REMARK: Carnot groups and $\mathbb{S U}(2)$ ARE admissible metric-measure groups.

Main result

Let $\mathrm{c}:[0,+\infty) \rightarrow(0,+\infty)$ be such that $\mathrm{c}, \mathrm{c}^{-1} \in \mathrm{~L}^{\infty}([0, T])$ for all $T>0$.
IDEA: c is a 'curvature function' and generalizes the usual $t \mapsto e^{-K t}$.
Examples: $\mathrm{c}(t) \equiv C_{\mathbb{G}}$ for Carnot groups and $\mathrm{c}(t)=C_{\mathbb{S U}(2)} e^{-2 t}$ for $\mathbb{S U}(2)$.
Define $\mathrm{R}(a, b)=\frac{1}{b-a} \int_{a}^{b} \mathrm{c}^{-2}(s) \mathrm{d} s$ for $0 \leq a \leq b$.

Theorem (S., 2020)

Let $(X, \mathrm{~d}, \mathfrak{m})$ be an admissible group + some technical hypotheses. TFAE:
$\mathrm{BE}_{w}: \Gamma\left(\mathrm{P}_{t} f\right) \leq \mathrm{c}^{2}(t) \mathrm{P}_{t} \Gamma(f)$
Kuwada: $W_{2}\left(\mathrm{P}_{t} \mu, \mathrm{P}_{t} \nu\right) \leq \mathrm{c}(t) W_{2}(\mu, \nu)$
$\mathrm{CD}_{w}: \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t+h} \mu_{s}\right) \leq(1-s) \operatorname{Ent}_{m}\left(\mathrm{P}_{t} \mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t} \mu_{1}\right)$

$$
+\frac{s(1-s)}{2 h}\left(\frac{1}{\mathrm{R}(t, t+h)} W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)-W_{2}^{2}\left(\mathrm{P}_{t} \mu_{0}, \mathrm{P}_{t} \mu_{1}\right)\right)
$$

for $t \geq 0$ and $h>0$, with $s \mapsto \mu_{s}$ a (1-speed) W_{2}-geodesic
$\mathrm{EVI}_{w}: W_{2}^{2}\left(\mathrm{P}_{t_{1}} \mu_{1}, \mathrm{P}_{t_{0}} \mu_{0}\right)-\frac{1}{\mathrm{R}\left(t_{0}, t_{1}\right)} W_{2}^{2}\left(\mu_{1}, \mu_{0}\right)$

$$
\leq 2\left(t_{1}-t_{0}\right)\left(\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{0}} \mu_{0}\right)-\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{1}} \mu_{1}\right)\right) \text { for } 0 \leq t_{0} \leq t_{1}
$$

Comments

$$
\begin{aligned}
& \mathrm{CD}_{w}: \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t+h} \mu_{s}\right) \leq(1-s) \operatorname{Ent}_{m}\left(\mathrm{P}_{t} \mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t} \mu_{1}\right) \\
& \quad \quad+\frac{s(1-s)}{2 h}\left(\frac{1}{R(t, t+h)} W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)-W_{2}^{2}\left(\mathrm{P}_{t} \mu_{0}, \mathrm{P}_{t} \mu_{1}\right)\right) \\
& \quad \text { for } t \geq 0 \text { and } h>0 \\
& \mathrm{EVI}_{w}: W_{2}^{2}\left(\mathrm{P}_{t_{1}} \mu_{1}, \mathrm{P}_{t_{0}} \mu_{0}\right)-\frac{W_{2}^{2}\left(\mu_{1}, \mu_{0}\right)}{\mathrm{R}\left(t_{0}, t_{1}\right)} \leq 2\left(t_{1}-t_{0}\right)\left(\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{0}} \mu_{0}\right)-\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{1}} \mu_{1}\right)\right) \\
& \quad \text { for } 0 \leq t_{0} \leq t_{1}
\end{aligned}
$$

1. The equivalence $\mathrm{BE}_{w} \Longleftrightarrow$ Kuwada is known, see [Kuwada, 2009] and [Ambrosio - Gigli - Savaré, 20 15], but we (re)do the proof because of some technical issues.
2. If $t=0$ in CD_{w}, then $\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{h} \mu_{s}\right) \leq(1-s) \operatorname{Ent}_{m}\left(\mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{1}\right)$

$$
+\frac{A(h)}{2} s(1-s) W_{2}^{2}\left(\mu_{0}, \mu_{1}\right) \text { with } A(h)=\frac{\mathrm{R}(0, h)^{-1}-1}{h} \text { for } h>0 .
$$

3. $\mathrm{CD}_{w} \Longrightarrow$ Kuwada is easy: multiply by $h>0$ and then send $h \rightarrow 0^{+}$.
4. $\mathrm{EVI}_{w} \Longrightarrow \mathrm{CD}_{w}$ follows from a general argument, see [Daneri - Savaré, 2008].
5. We only need to prove $\mathrm{BE}_{w} \Longrightarrow \mathrm{EVI}_{w}$. The proof is an adaptation of [Ambrosio - Gigli - Savaré, 20 I5] and [Erbar - Kuwada - Sturm, 20 15].

Other comments and futurama

$$
\begin{aligned}
\mathrm{CD}_{w}: & \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t+h} \mu_{s}\right) \leq(1-s) \operatorname{Ent}_{m}\left(\mathrm{P}_{t} \mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t} \mu_{1}\right) \\
& \quad+\frac{s(1-s)}{2 h}\left(\frac{1}{R(t, t+h)} W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)-W_{2}^{2}\left(\mathrm{P}_{t} \mu_{0}, \mathrm{P}_{t} \mu_{1}\right)\right) \\
& \text { for } t \geq 0 \text { and } h>0 \\
\mathrm{EVI}_{w}: & W_{2}^{2}\left(\mathrm{P}_{t_{1}} \mu_{1}, \mathrm{P}_{t_{0}} \mu_{0}\right)-\frac{W_{2}^{2}\left(\mu_{1}, \mu_{0}\right)}{R\left(t_{0}, t_{1}\right)} \leq 2\left(t_{1}-t_{0}\right)\left(\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{0}} \mu_{0}\right)-\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{1}} \mu_{1}\right)\right) \\
& \text { for } 0 \leq t_{0} \leq t_{1}
\end{aligned}
$$

1. We need the group structure of X to exploit the de-singularization property of the convolution: $\varrho \star \mu \ll \mathfrak{m}$. Can we avoid this assumption? Example: metric graphs.
Note: $\mathrm{BE}_{w} \Longrightarrow \mathrm{P}_{t} \mu \ll \mathfrak{m}$, but the W_{2}-metric velocity of $s \mapsto \mu_{s}^{t}=\mathrm{P}_{t} \mu_{s}$ cannot be related to the one of $s \mapsto \mu_{s}$ if $\mathrm{c}(0+)>1$. Examples: Carnot groups and $\mathbb{S U}(2)$!
2. Consider a sub-Riemannian manifold \mathbb{M} (possibly, without a group structure). Is there a BE_{w} inequality also encoding information about the dimension of \mathbb{M} ?
3. $\mathrm{RCD}(K, \infty)$ and EVI_{K} imply several nice properties about ($X, \mathrm{~d}, \mathfrak{m}$) (MCP, gradient flows, m-GH stability....). What can we deduce from RCD_{w} and EVI_{w} ?
4. W_{2}-contractions are also known for Markovian diffusion semigroup associated to $L=\Delta+Z$ with $Z \in C^{1}$ on (\mathbb{M}, g). Can we extend the result to this case?

Proof of $\mathrm{BE}_{w} \Longrightarrow \mathrm{EVI}_{w}[\mathrm{l} / 6]$

Let $s \in[0,1]$ and assume $s \mapsto \mu_{s}=f_{s} \mathfrak{m}$ is joining $\mu_{0}, \mu_{1} \in \mathscr{P}_{2}(X)$.
Define a new curve $s \mapsto \tilde{\mu}_{s}=\tilde{f}_{s} \mathfrak{m}$ as

$$
\tilde{\mu}_{s}=\mathrm{P}_{\eta(s)} \mu_{\vartheta(s),} \text { so that } \tilde{f}_{s}=\mathrm{P}_{\eta(s)} f_{\vartheta(s),}
$$

where $\eta \in C^{2}([0,1] ;[0,+\infty))$ and $\vartheta \in C^{1}([0,1] ;[0,1])$ with $\vartheta(0)=0$ and $\vartheta(1)=1$.
At least formally, we can compute

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \tilde{f}_{s}=\dot{\eta}(s) \Delta \mathrm{P}_{\eta(s)} f_{\vartheta(s)}+\dot{\vartheta}(s) \mathrm{P}_{\eta(s)} \dot{f}_{\vartheta(s)}
$$

for $s \in(0,1)$.

Proof of $\mathrm{BE}_{w} \Longrightarrow \mathrm{EVI}_{w}[2 / 6]$

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \tilde{f}_{s}=\dot{\eta}(s) \Delta \mathrm{P}_{\eta(s)} f_{\vartheta(s)}+\dot{\vartheta}(s) \mathrm{P}_{\eta(s)} \dot{f}_{\vartheta(s)}
$$

On the one hand, integrating by parts, we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{Ent}_{\mathfrak{m}}\left(\tilde{\mu}_{s}\right) & =\frac{\mathrm{d}}{\mathrm{~d} s} \int_{X} \tilde{f}_{s} \log \tilde{f}_{s} \mathrm{~d} \mathfrak{m} \\
& =\int_{X}\left(1+\log \tilde{f}_{s}\right) \frac{\mathrm{d}}{\mathrm{~d} s} \tilde{f}_{s} \mathrm{~d} \mathfrak{m} \\
& =-\dot{\eta}(s) \int_{X} p^{\prime}\left(\tilde{f}_{s}\right) \Gamma\left(\tilde{f}_{s}\right) \mathrm{d} \mathfrak{m}+\dot{\vartheta}(s) \int_{X} p\left(\tilde{f}_{s}\right) \mathrm{P}_{\eta(s)} \dot{f}_{\vartheta(s)} \mathrm{dm}
\end{aligned}
$$

for $s \in(0,1)$, where $p(r)=1+\log r$ for all $r>0$.
Since $p^{\prime}(r)=r\left(p^{\prime}(r)\right)^{2}$, by the chain rule $\Gamma(\varphi(f))=\left(\varphi^{\prime}(f)\right)^{2} \Gamma(f)$ we can write

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{Ent}_{\mathfrak{m}}\left(\tilde{\mu}_{s}\right)=-\dot{\eta}(s) \int_{X} \Gamma\left(g_{s}\right) \mathrm{d} \tilde{\mu}_{s}+\dot{\vartheta}(s) \int_{X} \dot{f}_{\vartheta(s)} \mathrm{P}_{\eta(s)} g_{s} \mathrm{dm}
$$

for $s \in(0,1)$, where $g_{s}=p\left(\tilde{f}_{s}\right)$ for brevity.

Proof of $\mathrm{BE}_{w} \Longrightarrow \mathrm{EVI}_{w}[3 / 6]$

On the other hand, by Kantorovich duality, we have

$$
\frac{1}{2} W_{2}^{2}(\mu, \nu)=\sup \left\{\int_{X} Q_{1} \varphi \mathrm{~d} \mu-\int_{X} \varphi \mathrm{~d} \nu: \varphi \in \operatorname{Lip}(X) \text { with bounded support }\right\},
$$ where

$$
Q_{s} \varphi(x)=\inf _{y \in X} \varphi(y)+\frac{\mathrm{d}^{2}(y, x)}{2 s}
$$

for $x \in X$ and $s>0$, is the Hopf-Lax infimum-convolution semigroup.
Note that $\varphi_{s}=Q_{s} \varphi$ solves the Hamilton-Jacobi equation $\partial_{s} \varphi_{s}+\frac{1}{2}\left|\mathrm{D} \varphi_{s}\right|^{2}=0$.
Again integrating by parts, we can compute

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s} \int_{X} \varphi_{s} \tilde{f}_{s} \mathrm{~d} \mathfrak{m}= & \int_{X} \partial_{s} \varphi_{s} \mathrm{~d} \tilde{\mu}_{s}+\int_{X} \varphi_{s} \frac{\mathrm{~d}}{\mathrm{~d} s} \tilde{f}_{s} \mathrm{dm} \\
= & -\frac{1}{2} \int_{X} \Gamma\left(\varphi_{s}\right) \mathrm{d} \tilde{\mu}_{s}-\dot{\eta}(s) \int_{X} \Gamma\left(\varphi_{s}, \tilde{f}_{s}\right) \mathrm{dm} \\
& +\dot{\vartheta}(s) \int_{X} \dot{f}_{\vartheta(s)} \mathrm{P}_{\eta(s)} \varphi_{s} \mathrm{dm} .
\end{aligned}
$$

Proof of $\mathrm{BE}_{w} \Longrightarrow \mathrm{EVI}_{w}[4 / 6]$

Combining the above inequalities, we get

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s} \int_{X} \varphi_{s} \tilde{f}_{s} \mathrm{dm} & +\dot{\eta}(s) \frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{Ent}_{\mathfrak{m}}\left(\tilde{\mu}_{s}\right) \leq-\frac{1}{2} \int_{X}\left(\Gamma\left(\varphi_{s}\right)+\dot{\eta}(s)^{2} \Gamma\left(g_{s}\right)\right) \mathrm{d} \tilde{\mu}_{s} \\
& -\dot{\eta}(s) \int_{X} \Gamma\left(\varphi_{s}, \tilde{f}_{s}\right) \mathrm{d} \mathfrak{m}+\dot{\vartheta}(s) \int_{X} \dot{f}_{\vartheta(s)} \mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) \mathrm{d} \mathfrak{m}
\end{aligned}
$$

for $s \in(0,1)$, forgetting the term $-\frac{\dot{\eta}(s)^{2}}{2} \int_{X} \Gamma\left(g_{s}\right) \mathrm{d} \tilde{\mu}_{s} \leq 0$.
Now by non-smooth Calculus (since r $p^{\prime}(r)=1$)

$$
\begin{aligned}
\Gamma\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) & =\Gamma\left(\varphi_{s}\right)+2 \dot{\eta}(s) \Gamma\left(\varphi_{s}, g_{s}\right)+\dot{\eta}(s)^{2} \Gamma\left(g_{s}\right), \\
\Gamma\left(\varphi_{s}, g_{s}\right) & =\Gamma\left(\varphi_{s}, p\left(\tilde{f}_{s}\right)\right)=p^{\prime}\left(\tilde{f}_{s}\right) \Gamma\left(\varphi_{s}, \tilde{f}_{s}\right), \\
\Gamma\left(\varphi_{s}, g_{s}\right) \tilde{f}_{s} & =\tilde{f}_{s} p^{\prime}\left(\tilde{f}_{s}\right) \Gamma\left(\varphi_{s}, \tilde{f}_{s}\right)=\Gamma\left(\varphi_{s}, \tilde{f}_{s}\right),
\end{aligned}
$$

and thus

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s} \int_{X} \varphi_{s} \tilde{f}_{s} \mathrm{~d} \mathfrak{m}+\dot{\eta}(s) \frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{Ent}_{\mathfrak{m}}\left(\tilde{\mu}_{s}\right) \leq & -\frac{1}{2} \int_{X} \Gamma\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) \mathrm{d} \tilde{\mu}_{s} \\
& +\dot{\vartheta}(s) \int_{X} \dot{f}_{\vartheta(s)} \mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) \mathrm{dm}
\end{aligned}
$$

Proof of $\mathrm{BE}_{w} \Longrightarrow \mathrm{EVI}_{w}[5 / 6]$

At this point, the crucial information we need on $s \mapsto \mu_{s}=f_{s} \mathfrak{m}$ is that [Lisini]

$$
\begin{equation*}
\int_{X} \dot{f}_{s} \psi \mathrm{dm} \leq\left|\dot{\mu}_{s}\right|\left(\int_{X} \Gamma(\psi) \mathrm{d} \mu_{s}\right)^{\frac{1}{2}} \tag{Lisini}
\end{equation*}
$$

for all 'nice' functions ψ, where

$$
\left|\dot{\mu}_{s}\right|=\lim _{h \rightarrow 0} \frac{W_{2}\left(\mu_{s+h}, \mu_{s}\right)}{h}
$$

is the metric velocity of the curve $s \mapsto \mu_{s}$ with respect to the Wasserstein distance. We hence may choose $\psi=\mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right)$ and estimate

$$
\begin{aligned}
& \dot{\vartheta}(s) \int_{X} \dot{f}_{\vartheta(s)} \mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) \mathrm{dm}=\int_{X}\left(\frac{\mathrm{~d}}{\mathrm{~d} s} f_{\vartheta(s)}\right) \mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) \mathrm{dm} \\
& \quad \stackrel{(\operatorname{Lisinin})}{\leq}|\dot{\vartheta}(s)|\left|\dot{\mu}_{\vartheta(s)}\right|\left(\int_{X} \Gamma\left(\mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right)\right) \mathrm{d} \mu_{s}\right)^{\frac{1}{2}} \\
& \quad \stackrel{(\mathrm{C}-\mathrm{s})}{\leq} \frac{\mathrm{c}^{2}(\eta(s))}{2} \dot{\vartheta(s)^{2}\left|\dot{\mu}_{\vartheta(s)}\right|^{2}+\frac{\mathrm{c}^{-2}(\eta(s))}{2} \int_{X} \Gamma\left(\mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right)\right) \mathrm{d} \mu_{s}} \\
& \quad \stackrel{\left(\mathrm{BE}_{w}\right)}{\leq} \frac{\mathrm{c}^{2}(\eta(s))}{2} \dot{\vartheta}(s)^{2}\left|\dot{\mu}_{\vartheta(s)}\right|^{2}+\frac{1}{2} \int_{X} \Gamma\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) \mathrm{d} \tilde{\mu}_{s} .
\end{aligned}
$$

Proof of $\mathrm{BE}_{w} \Longrightarrow \mathrm{EVI}_{w}[6 / 6]$

By combining the above inequalities, we conclude that

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \int_{X} \varphi_{s} \tilde{f}_{s} \mathrm{~d} \mathfrak{m}+\dot{\eta}(s) \frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{Ent}_{\mathfrak{m}}\left(\tilde{\mu}_{s}\right) \leq \frac{\mathrm{c}^{2}(\eta(s))}{2} \dot{\vartheta}(s)^{2}\left|\dot{\mu}_{\vartheta(s)}\right|^{2}
$$

for $s \in(0,1)$.
Choose $\dot{\vartheta}(s)=\mathrm{c}^{-2}(\eta(s))$ and integrate, so that, by Kantorovich duality, we get

$$
\begin{aligned}
\frac{1}{2} W_{2}^{2}\left(\mathrm{P}_{\eta(1)} \mu_{1}, \mathrm{P}_{\eta(0)} \mu_{0}\right) & -\frac{1}{2 \mathrm{R}(\eta)} W_{2}^{2}\left(\mu_{1}, \mu_{0}\right)+\dot{\eta}(1) \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{\eta(1)} \mu_{1}\right) \\
& \leq \dot{\eta}(0) \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{\eta(0)} \mu_{0}\right)+\int_{0}^{1} \ddot{\eta}(s) \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{\eta(s)} \mu_{\vartheta(s)}\right) \mathrm{d} s
\end{aligned}
$$

where $\mathrm{R}(\eta)=\int_{0}^{1} \mathrm{c}^{-2}(\eta(s)) \mathrm{d} s$.
No information on $\mathrm{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{\eta} \mu_{\vartheta}\right) \Longrightarrow$ choose $\eta(s)=(1-s) t_{0}+s t_{1} \Longrightarrow \mathrm{EVI}_{w}$.

THANK YOU FOR YOUR ATTENTION!

G. Stefani, Generalized Bakry-Émery curvature condition and equivalent entropic inequalities in groups, J. Geom. Anal. 32 (2022), no. 4, 136. Preprint available at arXiv:2008. 13731.

Slides available (contact: giorgio.stefani.math@gmail.com) or on giorgiostefani.weebly.com.

