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Euler equations, velocity form
The Euler equations for an incompressible inviscid 2-dimensional fluid are given by

o+ (v-V)uo+Vp=0 in(0,+00) x £,

dve=0 in [0, +00) x £,
v-vg =0 on [0, +00) x 99,
V]t=0 = o on Q.

Objects:
o ) is a sufficiently smooth (possibly unbounded) open set or the flat torus T?;
e v: [0,+00) x © — RZ is the velocity of the fluid;
e p: [0,+00) x 2 — R is the (scalar) pressure;
o vg: 9 — R2 s the inner unit normal to 9.

Conditions:
e dive = 0 is the incompressibility condition;
e v - g = 0 at the boundary is the no-flow (or slip) condition.

Note: either 2 = R? or = T? = no boundary condition is imposed.
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Euler equations, vorticity form
The vorticity w: [0, +00) x & — R of the fluid is

w = curlv
and satisfies

Oyw + div(vw) =0 in (0, +00) x Q,
v=Kw in [0, +00) x Q,
Wlt=o = wo on Q.

Biot-Savart law: The relation w = Kwv is the Biot-Savart law, ie.

v(t,x) = Kw(t,z) = /Qk:(m,y)w(t,y) dy,

where k: Q x Q — R2 is a convolution kernel.
Example: If © = R2, then k(xz,y) = ka(z — y) With

Z1

L
ka(x) = LI (—x2>_ L for all z € R?, = # 0.

2 Jaf? 2 Jaf?

3/25



Literature: a quick review

Theory of strong solutions is classical (since Lichtenstein 1920).

Existence of weak solutions:
e Yudovich (1963) for L' n L° vorticity
e DiPerna-Majda (1987), Delort (1991), Majda (1993), Vecchi-Wu (1993),
Evans-Miller (1994) for L* vorticity
e Serfati (1995), Vishk (1999), Taniuchi (2004) for non-decaying vorticity

Uniqueness of weak solutions:

e Yudovich (1963) for L' n L*° vorticity
e ‘Yudovich (1995) for unbounded vorticity with ZP-norm mildly growing
o Vishik (1999) for co-Besov vorticity

Philosophy;: while existence follows the usual pattern

smoothing data — existence of smooth solutions — compactness,
uniqueness is hard, due to non-linearity of Euler equations.

Warning: uniqueness is NOT expected for vorticity in L? with p < +oo!

e Vishk (2018), Albritton-Brue-Colombo-De Lellis-Giri-danisch-Kwon (202 1)
e Bressan-Murray (2020), Bressan-Shen (2021)
e Brue-Colombo (2021)
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Yudovich's well-posedness for L' N L™
Recall the Euler 2D equations in vorticity form:
Ow + div(vw) =0 in (0, +00) x £,
v=Kuw in [0, +00) x €, (E)

wlt=o = wo on .
Theorem (Yudovich 1963)
There is a unique weak solution (w,v) of (E) such that
w € L®([0,4+00); LY(R*) N L®(R?)) v € L™®([0, +00); Cp(R* R?))
starting from wg € L'(R?) N L™ (R?), vg = Kwp. Actually, the velocity satisfies
lo(t,2) —o(t,y)| S e —yl - logle —yl| z,yeR? t>0.

Proof:
e existence relies on compactness of smooth solutions;
e uniqueness follows from a clever energy method.
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Yudovich's energy method

Assume (w!,v!) and (w?,v?) are two weak solutions with same initial datum.
Consider the relative energy
E(t) = |v (t,z) —v2(t,2)|* dx fort > 0.
R2
Since v = Kw, then Vv = (VK )w, with VK a Calderon-Zygmund operator. Hence
IVollrr Spllwle <Cp forallp>1

where C' > 0 depends on |lw|| 1 and |lw| = only.
Exploit the Euler equations in velocity form d,v + (v - V)v + Vp = 0 to get

%E(t) < CpE®)'™Y? fortel0,T],

where T' > 0 has to be chosen.
By comparison with the maximal solution of the ODE, we get
E(t) < (Ct)» < (CT)? fortel0,T),
sothat E(t) = 0 for all t € [0, 7] letting p — +o0, provided that CT < 1.
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Yudovich's energy method revised

If lwllzr < O(p) for p > 1 for some growth function ©: [1, +o00) — (0, +00), then

IVvlle Spllwlle SpO(p) forallp>1.

Re-doing the same computations, one finds

d

4B S B0 ve (5

E(t)) for t € [0, T,

where

inf{1© (1) : e€(0,1/3)} for r € [0,1),
Yo(r) =
° inf{1© (1) r¢ : e€(0,13)} forre[1,+o0).

To show E(t) = 0 for t € [0,T], we just need z — z g (/=) to satisfy

/ L
o+ 7o (t/r) ’
the well-known Osgood condition.
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Yudovich's well-posedness for Y©
We let

Y®<Q>:{fe N L@ : fllyo = sup ””ﬂ<+oo}

p€E[1,+00) pE[1,+00) (p)

be the Yudovich space on € associated to ©.

Theorem (Yudovich 1995)

Assume © is such that
dr

o+ e (l/r)
There is a unique weak solution (w,v) of (E) such that

= 4-00.

w € L([0,+00); YO(R?)) v e L™([0, +00); Cp(R?%; R?))
starting from wy € Y©(R?), vy = Kwy. Actually, the velocity satisfies

|U(t,l‘) - U(tay” 5 |$ - y| . w@(l/‘x_yla) T,y € sz t>0.
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Examples of ©

Bad news:

e energy method needs sharp tools (Sobolev spaces, CZ theory)
e behavior of ¢g and its dependence on © are quite implicit!

Example: letting log,, p = loglog. . . logp, Yudovich proved that
_— ——

m times

Om(p) =~ logp 09, p -~ 109, p = ve,,(r) = l0gr l0g,7 --- (09,,,, 7

The Osgood condition is

e true for ©(p) = logp (actually, for any ©,,, with m > 1)
o false for ©(p) = p.

This means that Yudovich's result
e applies for vorticities with singularities of order |log|log |z||
e does not apply for vorticities with singularities of order |log|z|| (e.g, BMO)

Question: is there a more explicit relation between © and the modulus of continuity?

9/25



Properties of the kernel: less is more

Recall the Biot-Savart law is given by (dropping time dependence)

v(z) = Kw(z) = /Qk:(x,y)w(y) dy.
The convolution kernel k: Q x @ — R2 satisfies
Cq
|z —yl

e oscillation: |k(z, z) — k(y, 2)| < Cq % forall z,y,2 € Q, z # z, y;

o decay: |k(z,y)| < forall z,y € Q, = # y;

for some constants Cy, Cs > 0.

From the relation v = Kw, we also get
e incompressipility: div(Kw) = 0;
e no-flow: (Kw) - vq = 0 at the boundary.

IDEA: try to rely on the above 'metric' properties of & only!

A posteriori: we can even relax the incompressibility property to

e controlled Compression: || diV(KUJ)”Loo(Q) < CgHCUHLl(Q)
for some constant C5 > 0.
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Exploit decay and oscillation
Fix z,y € Qwithd = |z — y| < 1. We can split
Kw(z) — Ku(y)| < /Q k2, 2) — k(y, 2)] [w(z)] d2

:</ " / + / )|k<x7z>—k<y,z>||w<z>|dz-
Q\Ba(z) JON(Ba(2)\Bza(z)) JQNBsa(2)

We can estimate

oscillation
f R e R et e E[ 2 e
O\ Ba(z) O\ Ba(z) |z — 2|y — 2|

llat
/ oscg ion / |w(z)|2 i
QN(B2(2)\ Baa()) QN(B2(0)\ Baa()) 1% — 2|

decal
A w(z)] . W)l
QNBag(x) QNBag(x) |z — 2| QNBsa(y) ly — 2]
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Two functions

We need to control

ald) = sup/ ||"J_(Z)|2 dz and B(d) = sup
z€Q JQN(Ba(z)\Baa(z)) 1T 2

defined for d € (0, 1]. By Holder's inequality, we have

2 p’
Ol(d) S; (Sup |w||Lp(QmB2(m))> </ 711—217 d’l’)
z€Q 2d

’ 1/13,
92-2p AN
<C (d2_2p — 1) < COpd~l
~ (2]7/ 2) ~Up

3d , l/p/
pld) < (sup IwHLT’(QﬁBg,(m))) (/ rt=p dr)
e 0

32717/ 1/P
50( ) de- <0 —— p dl 2o,
2—p

.
where C' = SUp [lwl|Lr (@B, (2))-
zeQ

and, similarly,

W)

z€Q JONBs,(x) |z — 2|
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Regularity of the velocity /3
We let
Ly(Q) = {f € L) = [[fllze) = SUP 1fllze @By (@) < +OO}
be the uniformly-localized L space on 2. Note that radius = 1 is not restrictive.

Theorem (Holder continuity)
Let p € (2,400). If w € LY(Q) N LE(Q), then Kw € 02’1’2/"(Q;R2) with

|Kwllzmmny S max{1, 725 b (Wl + Iwllzp@)
|Kuw(e) - Ko@) S max{1, 25} (lwllz o +Iwl gy plo—y =7 Yo,y € Q.

Remark: the result is not a surprise, since (for the Biot-Savart kernel)
CZ theory + Morrey's inequality = Hélder continuity.

However, our proof is surprising elementary
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Regularity of the velocity 2/3
We let

1l
Yf(ﬂ)={fe N Z5@ : [fllve@ = sup ﬂ<+oo}

pE[l,+00) pE[L,400) O(p)

be the uniformly-localized Yudovich space on © associated to ©.
If we L) N Y2 (), then for all p > 3 we have

|Ku(@) - Ko(y)l S max{1, 15} (lwllni ) + @l z@) ple = o'~
S Ulllzs + Iwllye @) ©F) plz — y| .
f d = |z —y| < 1, then we can take p = |logd| > 1 and observe that

O(p) ple —y["~» = ©(|logd]) | logd| d'~ e ~ d|logd| ©(| logd])

since d” T = exp(i2; - logd) = €2,
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Regularity of the velocity 3/3
We let the function pe : [0, +00) — [0, 4+00) be such that e (0) = 0 and
r(1—1logr)©(1 —logr) forre (0,e7?]
po(r) =
e 230(3) for r > e=2.

We say that pe is the modulus of continuity associated to © and define

000 (B2 — Lo e 100 R?) + sup V@ — @I _
c, (QR)_{ el (Q,]R).fig ol =) <+ }

Corollary (pe-continuity)
If w e LY(Q) N YL (Q), then Kw € Cp#° (Q;R?) with

[KwllL=@ir2) S llwllzr@) + lwllve @)
[Kw(z) — Kw(y)| S (lwllzie) + llwllye @) vollz —yl) Va,y €.

Remark: we recover Yudovich's continuity modulus (e.g, ©,,), with NO sharp tools!
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Existence

By definition of e, note that

/0+ (pj("r) B / h pgz()p)'

Let p € (2, +00). For any wo € L*(Q) N Lf (Q), there is a weak solution (w, v)

of B ) NI o L0+ R ),

Moreover, if wy € L*(€2) NY,2(2), then (w, v) is such that
w € Lig([0,400); L") NYL(Q) v € Lg([0,+00); Gy ¥ (% R?))
and, provided that g is Osgood, (w,v) is Lagrangian.

Theorem (Existence)

ODE theory: pe Osgood = there is a unique flow X such that 4 X (¢,-) = v(t, X).

Lagrangian: the solution is such that w(t, -) = X (¢, -)swo (push-forward).

Remark: our existence result
e gives modulus of continuity even for © not BMO-like (eg., ©(p) =~ p%);
e does not rely on the specific structure of the Biot-Savart kernel.
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Proof of existence 1/2

Warning: we cannot rely on the existence of smooth solutions!

Indeed, the kernel is general, so there are no equations in velocity form.

We have to follow a different strategy:

1) construct a solution in L* N L>° via time-stepping argument;
2) construct a solution in L* N L by truncating the initial data;
3) show that the construction preserves the L' N'Y,2-regularity.

To gain existence, we need a compactness criterion & la Aubin-Lions:
e the proof exploits the Dunford-Pettis, Lusin and Arzela-Ascoli Theorems;
e we assume weak compactness, while usually one takes strong compactness.
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Proof of existence 2/2

Theorem (Baby Aubin-Lions)

Let T > 0 and let (f™)nen € L>([0,T7]; L*(2)) be a bounded sequence which is
equi-integrable in space uniformly in time:

® SUP,, ey /"l oo (o, 17; L1 () < 400
e Ve>036>0:ACQ, |Al <é=8Up, yllf"llLeeo,r); L1 (a)) <€
o Ve > 030, C Qwith || < 400 1 SUP, 1™ Lo (0,77 L1 (@\02.)) < €

Assume that, for each ¢ € C°(Q), the functions F,[¢]: [0,7] — R, given by

Falgl(t) = / (¢, ) pdz, te 0,T],

are uniformly equi-continuous on [0, 7).
Then there exist a subsequence (f™)xen and f € L>([0,T7]; L*(£2)) such that

lim /Qf”’“(t,~)godz:/ﬂf(t,')<pdx

k—+oco

forae t€[0,T] and all ¢ € L>=(9Q).
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Uniqueness

Theorem (Uniqueness)

Let © be such that pg is concave and Osgood. There is at most one (Lagrangian)
weak solution (w,v) of (E) such that

w € LR([0, +00); L) NYL(Q) v € LP([0, +o0); Gy *° (% R?)),

starting from wy € L*(Q) N Y2 (), vo = Kwo.

Remark: our uniqueness result
e recovers (and actually improves) Yudovich's uniqueness theorem,
e is proved in a Lagrangian way, we do not use the energy method;
e does not rely on the specific structure of the Biot-Savart kernel.

Careful: Osgood velocity = any weak solution is Lagrangian, but this is delicate!
e Ambrosio-Bernard (2008)
e Caravenna-Crippa (2021)
e Clop-gyha-Mateu-Orotobig (2019)
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Proof of uniqueness I/4

Assume (w!, ') and (w?,v?) are two Lagrangian solutions with same initial datum.
We can thus wrrite w? = X (¢, -)swo Where X is the flow associated to %, i = 1, 2.
Fix T > 0 and consider ¢ € [0,T]. We start with the usual splitting

t
X=X < [l X - o X ds
0
t t
g/ |vl(s,X1)—v1(s,X2)|ds+/ o (s, X2) — v (s, X2)| ds.
0 0

The first term is easy, we can use the pg-continuity and obtain
[0t (5, X1) — o' (5, X*)| S po (X = X7),

with implicit constant depending on [|w* || < (jo,r3;L1nve)-
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Proof of uniqueness 2/4

The second term is delicate. We use v = Kw and the push-forward to get
[0} (5, X?) = v*(s, X?)| = |(Kw")(s, X?) = (Kw?)(s, X?)]

Ak(XQ,y)wl(s7y)dy—/Qk(XQ,y)w2(8,y)dy’

[ K X st dy — |

[ X2 X sl dy‘

< /Q (X2, X1 (s5,9)) — K(X2, X2(5,9))] |wo(y)] dy.
We combine the two estimates and obtain
X1 - X7 < / ool X" — X?|)di
- t [ X 5090) = RO X s, 1) o)y .

Now choose the finite measure u = @ £? with@ = |wo| +nand 0 <n € Lt N L>.
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Proof of uniqueness 2/4

We integrate with respect to p. By Tonelli Theorem, we can estimate

/Q /Q (X (s,2), X (s,9)) — k(X2 (5, 2), X (5,))] o (9)| dy du(z)

- / o) / (X (5, 2), X (5,9)) — k(X2 (5, 2), X2(s,9)| dia(z) dy
Q Q

= [ T [ kG, X (510 = bl X3, 9)| X2 (5. )sol) e dy
Q Q

O]

< / o) pel|X (5,3) — X2(s,y)[) dy
Q

< / o (1X (5,9) — X2(s,)]) duly).

Inequality (!) follows from the same computations for the pg-continuity of velocity.

The implicit constant depends on [|@|| = jo,77; Linye) But @ = |wo| + 7, S0 we can
choose n € L' N L to let the constant depend on llwoll oo (f0,77; L1 ve) only!
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Proof of uniqueness 4/4

In conclusion, we get

t
[t -xans [ [ ve(ixt - X2 dua
Q 0 Q

But pe is concave and Osgood, so that

1 9 Young 1 9
/Qso@(\X CX)du < e /Q|X X du

and thus

€t) < / col€(s)dt,  £(s) = /Q X (s,) — X(s, )] dp,

0

imply that X! = X2 for all ¢ € [0, 77, which means w! = w? and s0 v! = v2.
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Futurama

Project I: apply this elementary approach to Vlasov-Poisson system

Of+v-Vof +E-V,f=0
E=Kp

o= [ tav
in collaboration with G. Crippa, T. Dolmaire and C. Saffirio.

Project 2: remove L assumption, dealing with weak solutions in Y for stitable ©,
in collaboration with G. Ciampa and G. Crippa.

Other ideas: more general functional spaces? other equations?
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