Bakry-Émery curvature condition and entropic inequalities on metric-measure groups

Giorgio Stefani
 倠慗 $\begin{gathered}\text { Universitöt } \\ \text { Basel }\end{gathered}$

Trento, 2 December 2021
G. Stefani, "Generalized Bakry-Émery curvature condition and equivalent entropic inequalities in groups", to appear on J. Geom. Anal., preprint available at arXiv:2008.13731.

Warm-up in \mathbb{R}^{N}

In \mathbb{R}^{N} the solution of the heat equation

$$
\begin{cases}\partial_{t} f_{t}=\Delta f_{t} & \text { on } \mathbb{R}^{N} \times(0,+\infty) \\ f_{0}=f & \text { on } \mathbb{R}^{N}\end{cases}
$$

is given by convolution as $\mathrm{P}_{t} f=\mathrm{p}_{t} * f$, where

$$
\mathrm{p}_{t}(x)=\frac{1}{(4 \pi t)^{N / 2}} e^{-\frac{|x|^{2}}{4 t}}, \quad x \in \mathbb{R}^{N}, t>0
$$

is the heat kernel.
Hence we have $\nabla \mathrm{P}_{t} f=\mathrm{p}_{t} *(\nabla f)=\mathrm{P}_{t} \nabla f$, so that

$$
\Gamma\left(\mathrm{P}_{t} f\right)=\left|\nabla \mathrm{P}_{t} f\right|^{2}=\left|\mathrm{P}_{t} \nabla f\right|^{2} \leq \mathrm{P}_{t}\left(|\nabla f|^{2}\right)=\mathrm{P}_{t} \Gamma(f)
$$

by Jensen's inequality.

Bochner formula and Bakry-Émery CD inequality

Let (\mathbb{M}, g) be a (complete and connected) N-dimensional smooth Riemannian manifold with Laplace-Beltrami operator Δ. The Bochner formula states that

$$
\frac{1}{2} \Delta|\nabla f|_{g}^{2}=\langle\nabla \Delta f, \nabla f\rangle_{g}+\|\operatorname{Hess} f\|_{2}^{2}+\operatorname{Ric}(\nabla f, \nabla f)
$$

Define

$$
\Gamma(f, g)=\langle\nabla f, \nabla g\rangle_{9}, \quad \Gamma_{2}(f, g)=\frac{1}{2}(\Delta \Gamma(f, g)-\Gamma(f, \Delta g)-\Gamma(\Delta f, g))
$$

Then the Bochner formula gives

$$
\frac{1}{2} \Delta \Gamma(f)=\Gamma(\Delta f, f)+\|\operatorname{Hess} f\|_{2}^{2}+\operatorname{Ric}(\nabla f, \nabla f),
$$

so that

$$
\Gamma_{2}(f)=\|\operatorname{Hess} f\|_{2}^{2}+\operatorname{Ric}(\nabla f, \nabla f)
$$

where $\Gamma(f)=\Gamma(f, f)$ and $\Gamma_{2}(f)=\Gamma_{2}(f, f)$ for simplicity.
Using Cauchy-Schwartz inequality, we can estimate

$$
\|\operatorname{Hess} f\|_{2}^{2} \geq \frac{1}{N}(\Delta f)^{2},
$$

and so we get Bakry-Émery curvature-dimension inequality
$\mathrm{CD}(K, N):$ Ric $\geq K, \operatorname{dim} \mathbb{M} \leq N \Longleftrightarrow \Gamma_{2}(f) \geq \frac{1}{N}(\Delta f)^{2}+K \Gamma(f)$.

Bakry-Émery pointwise gradient estimate on (M, g)

Assume that (\mathbb{M}, g) satisfies Ric $\geq K$, so that $\Gamma_{2}(f) \geq K \Gamma(f)$ (take $N=\infty$).
Define $\varphi(s)=P_{s} \Gamma\left(P_{t-s} f\right)$ for $s \in[0, t]$. Then

$$
\varphi^{\prime}(s)=2 P_{s} \Gamma_{2}\left(P_{t-s} f\right) \stackrel{\mathrm{CD}(K, \infty)}{\geq} 2 K P_{s} \Gamma\left(P_{t-s} f\right)=2 K \varphi(s)
$$

and thus, by Grönwall inequality,

$$
\begin{equation*}
\Gamma\left(\mathrm{P}_{t} f\right) \leq e^{-2 K t} \mathrm{P}_{t} \Gamma(f), \tag{BE}
\end{equation*}
$$

the Bakry-Émery pointwise gradient estimate for the heat flow. If $\mathbb{M}=\mathbb{R}^{N}$, then $K=0$ and we recover the Euclidean case.

Differentiating (BE) at $t=0$ we get $\mathrm{CD}(K, \infty)$.
This argument works also for the case $N<\infty$ [Wang, 2011].

Warm-up in \mathbb{H}^{1}

On the manifold \mathbb{R}^{3} consider the non-commutative group operation

$$
p \bullet q=(x, y, z) \bullet\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{1}{2}\left(x y^{\prime}-y x^{\prime}\right)\right) .
$$

The resulting Lie group $\left(\mathbb{R}^{3}, \bullet\right) \equiv \mathbb{H}^{1}$ is the (first) Heisenberg group.
There is a family of dilations: $\delta_{\lambda}(p)=\left(\lambda x, \lambda y, \lambda^{2} z\right)$ for $\lambda>0$.
The Haar measure is the Lebesgue measure $\mathscr{L}^{3}=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$.
The tangent space is spanned by

$$
X=\partial_{x}-\frac{y}{2} \partial_{z}, \quad Y=\partial_{y}+\frac{x}{2} \partial_{z}, \quad Z=[X, Y]=\partial_{z} .
$$

We use the horizontal generators X, Y to define

$$
\mathrm{d}_{C C}(p, q)=\inf \left\{\int_{0}^{1}\left\|\dot{\gamma}_{s}\right\|_{\mathbb{H}^{1}} \mathrm{~d} s: \gamma_{0}=p, \gamma_{1}=q, \dot{\gamma}_{s} \in \operatorname{span}\left\{X_{\gamma_{s}}, Y_{\gamma_{s}}\right\}\right\} .
$$

The function d_{CC} is the Carnot-Carathéodory (CC) distance [Chow-Rashevskii].
We work with the (not-that-bad) metric-measure space $\left(\mathbb{H}^{1}, \mathrm{~d}_{\mathrm{CC}}, \mathscr{L}^{3}\right)$.

What about a BE gradient estimate in \mathbb{H}^{1} ?
The canonical sub-Laplacian in \mathbb{H}^{1} is $\Delta_{\mathbb{H}^{1}}=X^{2}+Y^{2}$, which is not elliptic. But $\Delta_{\mathbb{H}^{1}}$ is hypoelliptic, so the fundamental solution p_{t} of $\partial_{t}-\Delta_{\mathbb{H}^{1}}$ is smooth [Hörmander]. In \mathbb{H}^{1} the solution of the (sub-elliptic) heat equation

$$
\begin{cases}\partial_{t} f_{t}=\Delta_{\mathbb{H}^{1}} f_{t} & \text { on } \mathbb{R}^{3} \times(0,+\infty) \\ f_{0}=f & \text { on } \mathbb{R}^{3}\end{cases}
$$

is thus given by group convolution as

$$
\mathrm{P}_{t} f(p)=\mathrm{p}_{t} \star f(p)=\int_{\mathbb{R}^{3}} \mathrm{p}_{t}\left(q^{-1} p\right) f(q) \mathrm{d} q=\int_{\mathbb{R}^{3}} \mathrm{p}_{t}(q) f\left(p q^{-1}\right) \mathrm{d} q
$$

The horizontal gradient $\nabla_{\mathbb{H}^{1}}=(X, Y)$ is only left-invariant, so

$$
\nabla_{\mathbb{H}^{1}} \mathrm{P}_{t} f=\nabla_{\mathbb{H}^{1}}\left(\mathrm{p}_{t} \star f\right)=\left(\nabla_{\mathbb{H}^{1}} \mathrm{p}_{t}\right) \star f \neq \mathrm{p}_{t} \star\left(\nabla_{\mathbb{H}^{1}} f\right)=\mathrm{P}_{t}\left(\nabla_{\mathbb{H}^{1}} f\right) .
$$

Theorem (Driver - Melcher, 2005)

There exists $C_{\mathbb{H}^{1}}>1$ such that $\Gamma^{\mathbb{H}^{1}}\left(\mathrm{P}_{t} f\right) \leq C_{\mathbb{H}^{1}}^{2} \mathrm{P}_{t} \Gamma^{\mathbb{H}^{1}}(f)$.
This is a weak BE gradient estimate in \mathbb{H}^{1}, so no differentiation at time $t=0$!

Wasserstein distance

Let ($X, \mathrm{~d}$) be a Polish (geodesic) metric space. We endow the set

$$
\mathscr{P}_{2}(X)=\left\{\mu \in \mathscr{P}(X): \int_{X} \mathrm{~d}\left(x, x_{0}\right)^{2} \mathrm{~d} \mu(x)<+\infty, x_{0} \in X\right\}
$$

with the Wasserstein distance

$$
W_{2}^{2}(\mu, \nu)=\inf \left\{\int_{X \times X} \mathrm{~d}^{2}(x, y) \mathrm{d} \pi: \pi(x, y) \in \operatorname{Plan}(\mu, \nu)\right\},
$$

where

$$
\operatorname{Plan}(\mu, \nu)=\left\{\pi \in \mathscr{P}(X \times X):\left(p_{1}\right)_{\#} \pi=\mu,\left(p_{2}\right)_{\#} \pi=\nu\right\} .
$$

Fact: $\left(\mathscr{P}_{2}(X), W_{2}\right)$ is a Polish (geodesic) metric space.
By Kantorovich duality formula [Fenchel-Rockafellar duality principle]

$$
\frac{1}{2} W_{2}^{2}(\mu, \nu)=\sup \left\{\int_{X} Q_{1} \varphi \mathrm{~d} \mu-\int_{X} \varphi \mathrm{~d} \nu: \varphi \in \operatorname{Lip}(X) \text { with bounded support }\right\}
$$

where

$$
Q_{s} \varphi(x)=\inf _{y \in X} \varphi(y)+\frac{d^{2}(y, x)}{2 s}
$$

for $s>0$ with $Q_{0} \varphi=\varphi$ is the Hopf-Lax semigroup.

Kuwada duality

Assume $(X, \mathrm{~d})=(\mathbb{M}, \mathrm{g})$. We have another equivalent characterization of $\mathrm{Ric} \geq K$.
Theorem (von Renesse - Sturm, 2005)

$$
\Gamma\left(\mathrm{P}_{t} f\right) \leq e^{-2 K t} \mathrm{P}_{t} \Gamma(f) \Longleftrightarrow W_{2}\left(\mathrm{P}_{t} \mu, \mathrm{P}_{t} \nu\right) \leq e^{-K t} W_{2}(\mu, \nu)
$$

A similar result is available for $(X, \mathrm{~d})=\left(\mathbb{H}^{1}, \mathrm{~d}_{C C}\right)$.
Theorem (Kuwada, 2010)

$$
\Gamma^{\mathbb{H}^{1}}\left(\mathrm{P}_{t} f\right) \leq C_{\mathbb{H}^{1}}^{2} \mathrm{P}_{t} \Gamma^{\mathbb{H}^{1}}(f) \Longleftrightarrow W_{2}\left(\mathrm{P}_{t} \mu, \mathrm{P}_{t} \nu\right) \leq C_{\mathbb{H}^{1}} W_{2}(\mu, \nu)
$$

Entropy

On ($X, \mathrm{~d}$), put a (non-negative, σ-finite and Borel) measure \mathfrak{m}. Assume that

$$
\exists A, B>0 \quad: \quad \mathfrak{m}\left(\left\{x \in X: \mathrm{d}\left(x, x_{0}\right)<r\right\}\right) \leq A e^{B r^{2}}
$$

The (Boltzmann) entropy $\mathrm{Ent}_{\mathfrak{m}}: \mathscr{P}_{2}(X) \rightarrow(-\infty,+\infty]$ is

$$
\operatorname{Ent}_{\mathfrak{m}}(\mu)= \begin{cases}\int_{X} \varrho \log \varrho \mathrm{dm} & \text { if } \mu=\varrho \mathfrak{m} \in \mathscr{P}_{2}(X) \\ +\infty & \text { otherwise. }\end{cases}
$$

Assumption (exp.ball) ensures that $\operatorname{Ent}(\mu)>-\infty$ for all $\mu \in \mathscr{P}_{2}(X)$.
If $(X, \mathrm{~d}, \mathfrak{m})=(\mathbb{M}, g)$ with $\operatorname{Ric} \geq K$, then
Bishop volume comparison Theorem \Rightarrow (exp.ball).
If $(X, \mathrm{~d}, \mathfrak{m})=\left(\mathbb{H}^{1}, \mathrm{~d}_{\mathrm{CC}}, \mathscr{L}^{3}\right)$, then

$$
\text { group structure and dilations } \Rightarrow \text { (exp.ball), }
$$

because

$$
\mathscr{L}^{3}\left(B_{C \subset}(p, r)\right)=\mathscr{L}^{3}\left(B_{\subset \subset}(0, r)\right)=\mathscr{L}^{3}\left(\delta_{r}\left(B_{C \subset}(0,1)\right)\right)=r^{4} \mathscr{L}^{3}\left(B_{\subset \subset}(0,1)\right) .
$$

Geodesic convexity of entropy and $\mathrm{CD}(K, \infty)$
Assume $(X, \mathrm{~d}, \mathfrak{m})=(\mathbb{M}, \mathrm{g})$. We have yet another equivalence with Ric $\geq K$.

Theorem (von Renesse - Sturm, 2005)

$\operatorname{Ric} \geq K \Longleftrightarrow \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{s}\right) \leq(1-s) \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{1}\right)-\frac{K}{2} s(1-s) W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)$ where $s \mapsto \mu_{s}$ is any (constant unit speed) W_{2}-geodesic joining μ_{0} and μ_{1}.

Observation [Lott-Villani \& Sturm]: the W_{2}-geodesic K-convexity of Ent ${ }_{\mathfrak{m}}$ does NOT need the smoothness of (\mathbb{M}, g), it ONLY needs d and \mathfrak{m}. Hence it makes sense in ANY metric-measure space.

Definition: $(X, \mathrm{~d}, \mathfrak{m})$ is $\mathrm{CD}(K, \infty)$ if $\mathrm{Ent}_{\mathfrak{m}}$ is W_{2}-geodesic K-convex.
Bad news: $\left(\mathbb{H}^{1}, \mathrm{~d}_{C C}, \mathscr{L}^{3}\right)$ does not satisfy the $\mathrm{CD}(K, \infty)$ property! [Juillet, 2009] On $\left(\mathbb{H}^{1}, \mathrm{~d}_{\mathrm{CC}}, \mathscr{L}^{3}\right)$ it actually holds [Balogh-Kristaly-Sipos, 20 IB]

$$
\operatorname{Ent}_{\mathscr{L}^{3}}\left(\mu_{s}\right) \leq(1-s) \operatorname{Ent}_{\mathscr{L}^{3}}\left(\mu_{0}\right)+s \operatorname{Ent}_{\mathscr{L}^{3}}\left(\mu_{1}\right)+w(s)
$$

where $w(s)=-2 \log \left((1-s)^{(1-s)} s^{s}\right)$ for $s \in[0,1]$ (concave correction).

Heat flow in $(X, \mathrm{~d}, \mathfrak{m})$

We now work in a metric-measure space $(X, \mathrm{~d}, \mathfrak{m})$. The Cheeger energy is

$$
\operatorname{Ch}(f)=\inf \left\{\liminf _{n} \int_{X}\left|\mathrm{D} f_{n}\right|^{2} \mathrm{dm}: f_{n} \rightarrow f \text { in } L^{2}(X, \mathfrak{m}), f_{n} \in \operatorname{Lip}(X)\right\} .
$$

Here $|\operatorname{D} f|(x)=\limsup _{y \rightarrow x} \frac{|f(y)-f(x)|}{\mathrm{d}(x, y)}$ denotes the slope of $f \in \operatorname{Lip}(X ; \mathbb{R})$.
Properties: Cheeger energy is convex, l.s.c. and its domain $W^{1,2}(X, \mathrm{~d}, \mathfrak{m})$ is dense.
The heat flow in $(X, \mathrm{~d}, \mathfrak{m})$ is the (Hilbertian) gradient flow of Ch in $L^{2}(X, \mathfrak{m})$: for $f_{0} \in L^{2}(X, \mathfrak{m}), \exists t \mapsto f_{t}=\mathrm{P}_{t} f_{0} \in \operatorname{Lip} \mathrm{loc}_{\text {loc }}\left((0,+\infty) ; \mathrm{L}^{2}(X, \mathfrak{m})\right)$ such that

$$
f_{t} \underset{t \rightarrow 0}{\longrightarrow} f_{0} \text { in }\left\llcorner^{2}(X, \mathfrak{m}) \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} t} f_{t} \in-\partial^{-} \operatorname{Ch}\left(f_{t}\right) \text { for a.e. } t>0\right. \text {. }
$$

The Laplacian $-\Delta_{\mathrm{d}, \mathfrak{m}} f \in \partial^{-} \mathrm{Ch}(f)$ is the element of minimal $\mathrm{L}^{2}(X, \mathfrak{m})$-norm.
CAUTION: ${ }^{1,2}(X, \mathrm{~d}, \mathfrak{m})$ with $\|f\|_{\mathrm{W}^{1,2}}=\left(\|f\|_{L^{2}}^{2}+\mathrm{Ch}(f)\right)^{1 / 2}$ is Banach, but not Hilbert in general! For example, consider $\left(\mathbb{R}^{n},\|\cdot\|_{p}, \mathscr{L}^{n}\right)$ for $p \neq 2$.

Non-smooth Calculus on $(X, \mathrm{~d}, \mathfrak{m})$

Theorem (Ambrosio - Gigli - Savaré, 2014)
Any $f \in W^{1,2}(X, \mathrm{~d}, \mathfrak{m})$ has a (unique) weak gradient $|\mathrm{D} f|_{w} \in \mathrm{~L}^{2}(X, \mathfrak{m})$ such that

$$
\operatorname{Ch}(f)=\frac{1}{2} \int_{X}|\mathrm{D} f|_{w}^{2} \mathrm{dm}
$$

Theorem (Ambrosio - Gigli - Savaré, 2014)

$|\mathrm{D} f|_{w}$ behaves like the 'modulus of the gradient':

- locality: $|\mathrm{D} f|_{w}=|\mathrm{D} g|_{w}$ m-a.e. on $\{f-g=c\}_{\text {; }}$
- Leibniz rule: $|\mathrm{D}(f g)|_{w} \leq|f||\mathrm{D} g|_{w}+|\mathrm{D} f|_{w}|g|_{;}$
- chain rule: $|\operatorname{D} \varphi(f)|_{w} \leq\left|\varphi^{\prime}(f)\right||\operatorname{D} f|_{w}$;
- approximation: $\operatorname{Lip}(X) \cap \mathrm{L}^{2}(X, \mathfrak{m})$ is dense in energy in $W^{1,2}(X, \mathrm{~d}, \mathfrak{m})$.

Quadratic Cheeger energy

We say that Ch is quadratic if $\mathrm{Ch}(f+g)+\mathrm{Ch}(f-g)=2 \mathrm{Ch}(f)+2 \mathrm{Ch}(g)$.
Fact 1: Ch is quadratic $\Rightarrow W^{1,2}(X, \mathrm{~d}, \mathfrak{m})$ is Hilbert and P_{t} is linear.
Fact 2: Ch is quadratic $\Rightarrow \Gamma(f)=|\mathrm{D} f|_{w}^{2}$ is quadratic.

Theorem

$\Gamma(f, g)=|\mathrm{D}(f+g)|_{w}^{2}-|\mathrm{D} f|_{w}^{2}-|\mathrm{D} g|_{w}^{2}$ is 'the scalar product of gradients':

- Leibniz rule: $\Gamma(f g, h)=g \Gamma(f, h)+f \Gamma(g, h)$;
- chain rule: $\Gamma(\varphi(f), g)=\varphi^{\prime}(f) \Gamma(f, g)$.

Theorem

If Ch is quadratic then the (Dirichlet) energy $\mathcal{E}(f)=2 \mathrm{Ch}(f)$ satisfies

$$
\mathcal{E}(f, g)=\int_{X} \Gamma(f, g) \mathrm{dm}=-\int_{X} g \Delta_{\mathrm{d}, \mathfrak{m}} f \mathrm{dm} .
$$

The Laplacian $\Delta_{\mathrm{d}, \mathrm{m}}$ satisfies the chain rule

$$
\Delta_{\mathrm{d}, \mathfrak{m}}(\varphi \circ f)=\varphi^{\prime}(f) \Delta_{\mathrm{d}, \mathfrak{m}} f+\varphi^{\prime \prime}(f) \Gamma(f) .
$$

Equivalence in $\mathrm{RCD}(K, \infty)$ spaces

Definition: $(X, \mathrm{~d}, \mathfrak{m})$ is $\operatorname{RCD}(K, \infty)$ if it is $\mathrm{CD}(K, \infty)$ and Ch is quadratic. [AGS]

Theorem (many people...)

Assume ($X, \mathrm{~d}, \mathfrak{m}$) has a quadratic Ch. TFAE:
$\mathrm{BE}(K, \infty): \Gamma\left(\mathrm{P}_{t} f\right) \leq e^{-2 K t} \mathrm{P}_{t} \Gamma(f)$
Kuwada: $W_{2}\left(\mathrm{P}_{t} \mu, \mathrm{P}_{t} \nu\right) \leq e^{-K t} W_{2}(\mu, \nu)$
$\mathrm{CD}(K, \infty): \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{s}\right) \leq(1-s) \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{1}\right)-\frac{K}{2} s(1-s) W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)$
$\mathrm{EVI}_{K}: \frac{\mathrm{d}}{\mathrm{d} t} \frac{W_{2}^{2}\left(\mathrm{P}_{t} \mu, \nu\right)}{2}+\frac{K}{2} W_{2}^{2}\left(\mathrm{P}_{t} \mu, \nu\right)+\operatorname{Ent}\left(\mathrm{P}_{t} \mu\right) \leq \operatorname{Ent}(\nu)$
Remark: EVI_{K} stands for Evolution Variational Inequality and encodes the fact that the heat flow is the metric gradient flow of the entropy in the Wasserstein space.

Non-CD (K, ∞) spaces: the Carnot groups
A Carnot group \mathbb{G} is a connected, simply connected, stratified Lie group with

$$
\operatorname{Lie}(\mathbb{G})=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{\kappa}, \quad V_{i}=\left[V_{1}, V_{i-1}\right], \quad\left[V_{1}, V_{\kappa}\right]=\{0\} .
$$

By Campbell-Hausdorff formula, $\mathbb{G} \sim\left(\mathbb{R}^{n}, \cdot\right)$ using exponential coordinates.
We call $H \mathbb{G}=V_{1}$ the horizontal directions. If $V_{1}=\operatorname{span}\left\{X_{1}, \ldots, X_{m}\right\}$, then $\nabla_{\mathbb{G}} f=\sum_{j=1}^{m}\left(X_{j} f\right) X_{j} \in V_{1}$ and $\Delta_{\mathbb{G}}=\sum_{j=1}^{m} X_{j}^{2}$ (Kohn's sub-Laplacian).

The Carnot-Carathéodory distance of $x, y \in \mathbb{G}$ is

$$
\mathrm{d}_{\mathrm{CC}}(x, y)=\inf \left\{\int_{0}^{1}\left\|\dot{\gamma}_{s}\right\|_{\mathbb{G}} d s: \gamma_{0}=x, \gamma_{1}=y, \dot{\gamma}_{t} \in V_{1}\right\} .
$$

Then $\left(\mathbb{G}, \mathrm{d}_{\mathrm{cc}}, \mathscr{L}^{n}\right)$ is Polish, geodesic and $\mathscr{L}^{n}\left(\mathrm{~B}_{\mathrm{CC}}(x, r)\right)=C r^{Q}, Q \in \mathbb{N}$.
Example: for \mathbb{H}^{1} it is $\kappa=2, V_{1}=\operatorname{span}\{X, Y\}, V_{2}=\operatorname{span}\{Z\}, Q=4$.
Theorem (Ambrosio-S., 2018)
The metric-measure space $\left(\mathbb{G}, \mathrm{d}_{\mathrm{CC}}, \mathscr{L}^{n}\right)$ is not $\mathrm{CD}(K, \infty)$!

Another non-CD (K, ∞) space: the $\mathbb{S U}(2)$ group

$\mathbb{S U}(2)=$ Lie group of 2×2 complex unitary matrices with determinant 1 .
Lie algebra $\mathfrak{s u}(2)=2 \times 2$ complex unitary skew-Hermitian matrices with trace 0 .
A basis of $\mathfrak{s u}(2)$ is given by the Pauli matrices

$$
X=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right),
$$

satisfying the relations

$$
[X, Y]=2 Z, \quad[Y, Z]=2 X, \quad[Z, X]=2 Y
$$

Similarly as before, we define d_{CC} and $\nabla_{\mathrm{SU}(2)} f=(X f) X+(Y f) Y$.
Fact: $\left(\mathbb{S U}(2), \mathrm{d}_{C C}\right)$ is a Polish geodesic metric space.
Using the cylindric coordinates (for $r \in\left[0, \frac{\pi}{2}\right), \vartheta \in[0,2 \pi]$ and $\zeta \in[-\pi, \pi]$)
$(r, \vartheta, z) \mapsto \exp (r \cos \vartheta X+r \sin \vartheta Y) \exp (\zeta Z)=\left(\begin{array}{cc}e^{i \zeta} \cos r & e^{i(\vartheta-\zeta)} \sin r \\ -e^{-i(\vartheta-\zeta)} \sin r & e^{-i \zeta} \cos r\end{array}\right)$ the Haar measure $\sigma \in \mathscr{P}(\mathbb{S U}(2))$ is $\mathrm{d} \sigma=\frac{1}{4 \pi^{2}} \sin (2 r) \mathrm{d} r \mathrm{~d} \vartheta \mathrm{~d} \zeta$.

Why Carnot groups and $\mathbb{S U}(2)$?

Theorem (Melcher, 2008)

Let \mathbb{G} be a Carnot group. There exists $C_{\mathbb{G}} \geq 1$ such that $\Gamma^{\mathbb{G}}\left(\mathrm{P}_{t} f\right) \leq C_{\mathbb{G}}^{2} \mathrm{P}_{t} \Gamma^{\mathbb{G}}(f)$.
Remark: $C_{\mathbb{G}}=1 \Longleftrightarrow \mathbb{G}$ is commutative [Ambrosio-S., 20 I8].

Theorem (Baudoin - Bonnefont, 2008)
There exists $C_{\mathrm{SU}(2)} \geq \sqrt{2}$ such that $\Gamma^{\mathrm{SU}(2)}\left(\mathrm{P}_{t} f\right) \leq C_{\mathrm{SU}(2)}^{2} e^{-4 t} \mathrm{P}_{t} \Gamma^{\mathrm{SU}(2)}(f)$.

Question: $\mathrm{BE} \Longleftrightarrow$ Kuwada $\Longleftrightarrow \mathrm{RCD} \Longleftrightarrow \mathrm{EVI}$ also for \mathbb{G} and $\mathbb{S U}(2)$?

Fact: [Kuwada, 2009] gives the equivalence with the W_{2}-contraction property.

Admissible metric-measure groups

Assume ($X, \mathrm{~d}, \mathfrak{m}$) has Ch quadratic.

Definition (Admissible group)
($X, \mathrm{~d}, \mathfrak{m}$) is an admissible group if:

- the metric space $(X, \mathrm{~d})$ is locally compact;
- the set X is a topological group, i.e. $(x, y) \mapsto x y$ and $x \mapsto x^{-1}$ are continuous;
- d is left-invariant, i.e. $\mathrm{d}(z x, z y)=\mathrm{d}(x, y)$ for all $x, y, z \in X_{\text {; }}$
- \mathfrak{m} is a left-invariant Haar measure, i.e. \mathfrak{m} is a Radon measure such that $\mathfrak{m}(x E)=\mathfrak{m}(E)$ for all $x \in X$ and all Borel set $E \subset X$;
- X is unimodular, i.e. \mathfrak{m} is also right-invariant.

Remark: Carnot groups and $\mathbb{S U}(2)$ are admissible groups.

Main result

Let $\mathrm{c}: ~[0,+\infty) \rightarrow(0,+\infty)$ be such that $\mathrm{c}, \mathrm{c}^{-1} \in \mathrm{~L}^{\infty}([0, T])$ for all $T>0$.
Idea: c is the curvature function and generalizes $t \mapsto e^{-K t}$.
Examples: $\mathrm{c}(t)=C_{\mathbb{G}}$ for Carnot groups; $\mathrm{c}(t)=C_{\mathbb{S U}(2)} e^{-2 t}$ for $\mathbb{S U}(2)$.
Define $\mathrm{R}(a, b)=\int_{0}^{1} \mathrm{c}^{-2}((1-s) a+s b) \mathrm{d} s$ for $0 \leq a \leq b$.

Theorem (S., 2020)

Let $(X, \mathrm{~d}, \mathfrak{m})$ be an admissible group + some technical hypotheses. TFAE:
$\mathrm{BE}_{w}: \Gamma\left(\mathrm{P}_{t} f\right) \leq \mathrm{c}^{2}(t) \mathrm{P}_{t} \Gamma(f)$
Kuwada: $W_{2}\left(\mathrm{P}_{t} \mu, \mathrm{P}_{t} \nu\right) \leq \mathrm{c}(t) W_{2}(\mu, \nu)$
$\mathrm{CD}_{w}: \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t+h} \mu_{s}\right) \leq(1-s) \operatorname{Ent}_{m}\left(\mathrm{P}_{t} \mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t} \mu_{1}\right)$

$$
+\frac{s(1-s)}{2 h}\left(\frac{1}{R(t, t+h)} W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)-W_{2}^{2}\left(\mathrm{P}_{t} \mu_{0}, \mathrm{P}_{t} \mu_{1}\right)\right)
$$

for $t \geq 0$ and $h>0$, with $s \mapsto \mu_{s}$ a W_{2}-geodesic
$\mathrm{EVI}_{w}: W_{2}^{2}\left(\mathrm{P}_{t_{1}} \mu_{1}, \mathrm{P}_{t_{0}} \mu_{0}\right)-\frac{W_{2}^{2}\left(\mu_{1}, \mu_{0}\right)}{R\left(t_{0}, t_{1}\right)} \leq 2\left(t_{1}-t_{0}\right)\left(\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{0}} \mu_{0}\right)-\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{1}} \mu_{1}\right)\right)$ for $0 \leq t_{0} \leq t_{1}$

Comments

$$
\begin{aligned}
& \mathrm{CD}_{w}: \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t+h} \mu_{s}\right) \leq(1-s) \operatorname{Ent}_{m}\left(\mathrm{P}_{t} \mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t} \mu_{1}\right) \\
& \quad+\frac{s(1-s)}{2 h}\left(\frac{1}{R(t, t+h)} W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)-W_{2}^{2}\left(\mathrm{P}_{t} \mu_{0}, \mathrm{P}_{t} \mu_{1}\right)\right) \\
& \quad \text { for } t \geq 0 \text { and } h>0 \\
& \mathrm{EVI}_{w}: \quad W_{2}^{2}\left(\mathrm{P}_{t_{1}} \mu_{1}, \mathrm{P}_{t_{0}} \mu_{0}\right)-\frac{W_{2}^{2}\left(\mu_{1}, \mu_{0}\right)}{R\left(t_{0}, t_{1}\right)} \leq 2\left(t_{1}-t_{0}\right)\left(\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{0}} \mu_{0}\right)-\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{1}} \mu_{1}\right)\right) \\
& \quad \text { for } 0 \leq t_{0} \leq t_{1}
\end{aligned}
$$

1. The equivalence $\mathrm{BE}_{w} \Longleftrightarrow$ Kuwada is known, see [Kuwada, 2009] and [Ambrosio - Gigli - Savare, 2015$]$, but we (re)do the proof because of some technical issues.
2. If $t=0$ in CD_{w} then $\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{h} \mu_{s}\right) \leq(1-s) \operatorname{Ent}_{m}\left(\mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mu_{1}\right)$
$+\frac{A(h)}{2} s(1-s) W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)$ with $A(h)=\frac{\mathrm{R}(0, h)^{-1}-1}{h}$ for $h>0$.
3. $\mathrm{CD}_{w} \Rightarrow$ Kuwada is easy: multiply by $h>0$ and then send $h \rightarrow 0^{+}$.
4. $\mathrm{EVI}_{w} \Rightarrow \mathrm{CD}_{w}$ follows from a general argument, see [Daneri - Savaré, 2008].
5. We only need to prove $\mathrm{BE}_{w} \Rightarrow \mathrm{EVI}_{w}$. The proof is an adaptation of [Ambrosio Gigli - Savaré, 20 15] and [Erbar - Kuwada - Sturm, 20 15].

Other comments and futurama

$$
\begin{aligned}
& \mathrm{CD}_{w}: \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t+h} \mu_{s}\right) \leq(1-s) \operatorname{Ent}_{m}\left(\mathrm{P}_{t} \mu_{0}\right)+s \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t} \mu_{1}\right) \\
& \quad \quad+\frac{s(1-s)}{2 h}\left(\frac{1}{R(t, t+h)} W_{2}^{2}\left(\mu_{0}, \mu_{1}\right)-W_{2}^{2}\left(\mathrm{P}_{t} \mu_{0}, \mathrm{P}_{t} \mu_{1}\right)\right) \\
& \quad \text { for } t \geq 0 \text { and } h>0 \\
& \mathrm{EVI}_{w}: W_{2}^{2}\left(\mathrm{P}_{t_{1}} \mu_{1}, \mathrm{P}_{t_{0}} \mu_{0}\right)-\frac{W_{2}^{2}\left(\mu_{1}, \mu_{0}\right)}{R\left(t_{0}, t_{1}\right)} \leq 2\left(t_{1}-t_{0}\right)\left(\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{0}} \mu_{0}\right)-\operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{t_{1}} \mu_{1}\right)\right) \\
& \quad \text { for } 0 \leq t_{0} \leq t_{1}
\end{aligned}
$$

1. We need the group structure of X to exploit the de-singularization property of the convolution: $\varrho \star \mu \ll \mathfrak{m}$. Can we avoid this assumption? Example: metric graphs.
Note: $\mathrm{BE}_{w} \Rightarrow \mathrm{P}_{t} \mu \ll \mathfrak{m}$, but the W_{2}-metric velocity of $s \mapsto \mu_{s}^{t}=\mathrm{P}_{t} \mu_{s}$ cannot be related to the one of $s \mapsto \mu_{s}$ if $\mathrm{c}(0+)>1$ (example: Carnot groups and $\mathbb{S U}(2)!$).
2. Consider a sub-Riemannian manifold \mathbb{M} (possibly, without a group structure). Is there a BE_{w} inequality also encoding information about the dimension of \mathbb{M} ?
3. $\mathrm{RCD}(K, \infty)$ and EVI_{K} imply several nice properties about ($X, \mathrm{~d}, \mathfrak{m}$) (MCP, gradient flows, m-GH stability....). What can we deduce from RCD_{w} and EVI_{w} ?
4. W_{2}-contractions are also known for Markovian diffusion semigroup associated to $L=\Delta+Z$ with $Z \in C^{1}$ on (\mathbb{M}, g). Can we extend the result to this case?

Proof of $\mathrm{BE}_{w} \Rightarrow \mathrm{EVI}_{w}[1 / 6]$

Let $s \in[0,1]$ and assume $s \mapsto \mu_{s}=f_{s} \mathfrak{m}$ is joining $\mu_{0}, \mu_{1} \in \mathscr{P}_{2}(X)$.
Define a new curve $s \mapsto \tilde{\mu}_{s}=\tilde{f}_{s} \mathfrak{m}$ as

$$
\tilde{\mu}_{s}=\mathrm{P}_{\eta(s)} \mu_{\vartheta(s)}, \text { so that } \tilde{f}_{s}=\mathrm{P}_{\eta(s)} f_{\vartheta(s)}
$$

where $\eta \in C^{2}([0,1] ;[0,+\infty))$ and $\vartheta \in C^{1}([0,1] ;[0,1])$ with $\vartheta(0)=0$ and $\vartheta(1)=1$.
At least formally, we can compute

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \tilde{f}_{s}=\dot{\eta}(s) \Delta \mathrm{P}_{\eta(s)} f_{\vartheta(s)}+\dot{\vartheta}(s) \mathrm{P}_{\eta(s)} \dot{f}_{\vartheta(s)}
$$

for $s \in(0,1)$.

Proof of $\mathrm{BE}_{w} \Rightarrow \mathrm{EVI}_{w}[2 / 6]$

On the one hand, integrating by parts, we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{Ent}_{\mathfrak{m}}\left(\tilde{\mu}_{s}\right) & =\frac{\mathrm{d}}{\mathrm{~d} s} \int_{X} \tilde{f}_{s} \log \tilde{f}_{s} \mathrm{~d} \mathfrak{m} \\
& =\int_{X}\left(1+\log \tilde{f}_{s}\right) \frac{\mathrm{d}}{\mathrm{~d} s} \tilde{f}_{s} \mathrm{~d} \mathfrak{m} \\
& =-\dot{\eta}(s) \int_{X} p^{\prime}\left(\tilde{f}_{s}\right) \Gamma\left(\tilde{f}_{s}\right) \mathrm{d} \mathfrak{m}+\dot{\vartheta}(s) \int_{X} p\left(\tilde{f}_{s}\right) \mathrm{P}_{\eta(s)} \dot{f}_{\vartheta(s)} \mathrm{d} \mathfrak{m}
\end{aligned}
$$

for $s \in(0,1)$, where $p(r)=1+\log r$ for all $r>0$.
Since $p^{\prime}(r)=r\left(p^{\prime}(r)\right)^{2}$, by the chain rule $\Gamma(\varphi(f))=\left(\varphi^{\prime}(f)\right)^{2} \Gamma(f)$, we can write

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{Ent}_{\mathfrak{m}}\left(\tilde{\mu}_{s}\right)=-\dot{\eta}(s) \int_{X} \Gamma\left(g_{s}\right) \mathrm{d} \tilde{\mu}_{s}+\dot{\vartheta}(s) \int_{X} \dot{f}_{\vartheta(s)} \mathrm{P}_{\eta(s)} g_{s} \mathrm{dm}
$$

for $s \in(0,1)$, where $g_{s}=p\left(\tilde{f}_{s}\right)$ for brevity.

Proof of $\mathrm{BE}_{w} \Rightarrow \mathrm{EVI}_{w}[3 / 6]$

On the other hand, by Kantorovich duality, we have

$$
\frac{1}{2} W_{2}^{2}(\mu, \nu)=\sup \left\{\int_{X} Q_{1} \varphi \mathrm{~d} \mu-\int_{X} \varphi \mathrm{~d} \nu: \varphi \in \operatorname{Lip}(X) \text { with bounded support }\right\}
$$

where

$$
Q_{s} \varphi(x)=\inf _{y \in X} \varphi(y)+\frac{\mathrm{d}^{2}(y, x)}{2 s}, \quad \text { for } x \in X \text { and } s>0
$$

is the Hopf-Lax infimum-convolution semigroup.
Recalling that $\varphi_{s}=Q_{s} \varphi$ solves the Hamilton-Jacobi equation $\partial_{s} \varphi_{s}+\frac{1}{2}\left|\mathrm{D} \varphi_{s}\right|^{2}=0$, again integrating by parts, we can compute

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s} \int_{X} \varphi_{s} \tilde{f}_{s} \mathrm{~d} \mathfrak{m}= & \int_{X} \partial_{s} \varphi_{s} \mathrm{~d} \tilde{\mu}_{s}+\int_{X} \varphi_{s} \frac{\mathrm{~d}}{\mathrm{~d} s} \tilde{f}_{s} \mathrm{~d} \mathfrak{m} \\
= & -\frac{1}{2} \int_{X} \Gamma\left(\varphi_{s}\right) \mathrm{d} \tilde{\mu}_{s}-\dot{\eta}(s) \int_{X} \Gamma\left(\varphi_{s}, \tilde{f}_{s}\right) \mathrm{dm} \\
& +\dot{\vartheta(s)} \int_{X} \dot{f}_{\vartheta(s)} \mathrm{P}_{\eta(s)} \varphi_{s} \mathrm{dm}
\end{aligned}
$$

for $s \in(0,1)$.

Proof of $\mathrm{BE}_{w} \Rightarrow \mathrm{EVI}_{w}[4 / 6]$

Combining the above inequalities, we get

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s} \int_{X} \varphi_{s} \tilde{f}_{s} \mathrm{~d} \mathfrak{m} & +\dot{\eta}(s) \frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{Ent}_{\mathfrak{m}}\left(\tilde{\mu}_{s}\right) \leq-\frac{1}{2} \int_{X}\left(\Gamma\left(\varphi_{s}\right)+\dot{\eta}(s)^{2} \Gamma\left(g_{s}\right)\right) \mathrm{d} \tilde{\mu}_{s} \\
& -\dot{\eta}(s) \int_{X} \Gamma\left(\varphi_{s}, \tilde{f}_{s}\right) \mathrm{d} \mathfrak{m}+\dot{\vartheta}(s) \int_{X} \dot{f}_{\vartheta(s)} \mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) \mathrm{dm}
\end{aligned}
$$

for $s \in(0,1)$, forgetting the term $-\frac{\dot{\eta}(s)^{2}}{2} \int_{X} \Gamma\left(g_{s}\right) \mathrm{d} \tilde{\mu}_{s} \leq 0$.
Now $\Gamma\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right)=\Gamma\left(\varphi_{s}\right)+2 \dot{\eta}(s) \Gamma\left(\varphi_{s}, g_{s}\right)+\dot{\eta}(s)^{2} \Gamma\left(g_{s}\right)$ and, by the chain rule, $\Gamma\left(\varphi_{s}, g_{s}\right)=\Gamma\left(\varphi_{s}, p\left(\tilde{f}_{s}\right)\right)=p^{\prime}\left(\tilde{f}_{s}\right) \Gamma\left(\varphi_{s}, \tilde{f}_{s}\right)$. Since $r p^{\prime}(r)=1$, we have

$$
\int_{X} \Gamma\left(\varphi_{s}, g_{s}\right) \mathrm{d} \tilde{\mu}_{s}=\int_{X} \tilde{f}_{s} p^{\prime}\left(\tilde{f}_{s}\right) \Gamma\left(\varphi_{s}, \tilde{f}_{s}\right) \mathrm{d} \mathfrak{m}=\int_{X} \Gamma\left(\varphi_{s}, \tilde{f}_{s}\right) \mathrm{d} \mathfrak{m}
$$

and thus the above inequality simplifies to

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} s} \int_{X} \varphi_{s} \tilde{f}_{s} \mathrm{~d} \mathfrak{m}+\dot{\eta}(s) \frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{Ent}_{\mathfrak{m}}\left(\tilde{\mu}_{s}\right) \leq & -\frac{1}{2} \int_{X} \Gamma\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) \mathrm{d} \tilde{\mu}_{s} \\
& +\dot{\vartheta}(s) \int_{X} \dot{f}_{\vartheta(s)} \mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) \mathrm{d} \mathfrak{m}
\end{aligned}
$$

for $s \in(0,1)$.

Proof of $\mathrm{BE}_{w} \Rightarrow \mathrm{EVI}_{w}[5 / 6]$

At this point, the crucial information we need to know about the chosen curve $s \mapsto \mu_{s}=f_{s} \mathfrak{m}$ is that

$$
\int_{X} \dot{f}_{s} \psi \mathrm{dm} \leq\left|\dot{\mu}_{s}\right|\left(\int_{X} \Gamma(\psi) \mathrm{d} \mu_{s}\right)^{\frac{1}{2}}
$$

for all sufficiently 'nice' functions ψ, where $\left|\dot{\mu}_{s}\right|=\lim _{h \rightarrow 0} \frac{W_{2}\left(\mu_{s+h}, \mu_{s}\right)}{h}$ is the metric velocity of the curve $s \mapsto \mu_{s}$ with respect to the Wasserstein distance.

With this property at disposal, we may choose $\psi=\mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right)$ and estimate

$$
\begin{aligned}
\dot{\vartheta(s)} \int_{X} \dot{f}_{\vartheta(s)} & \mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) \mathrm{d} \mathfrak{m}=\int_{X}\left(\frac{\mathrm{~d}}{\mathrm{~d} s} f_{\vartheta(s)}\right) \mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) \mathrm{dm} \\
& \leq|\dot{\vartheta}(s)|\left|\dot{\mu}_{\vartheta(s)}\right|\left(\int_{X} \Gamma\left(\mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right)\right) \mathrm{d} \mu_{s}\right)^{\frac{1}{2}} \\
& \leq \frac{\mathrm{c}^{2}(\eta(s))}{2} \dot{\vartheta(s)^{2}\left|\dot{\mu}_{\vartheta(s)}\right|^{2}+\frac{\mathrm{c}^{-2}(\eta(s))}{2} \int_{X} \Gamma\left(\mathrm{P}_{\eta(s)}\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right)\right) \mathrm{d} \mu_{s}} \\
& \leq \frac{\mathrm{c}^{2}(\eta(s))}{2} \dot{\vartheta}(s)^{2}\left|\dot{\mu}_{\vartheta(s)}\right|^{2}+\frac{1}{2} \int_{X} \Gamma\left(\varphi_{s}+\dot{\eta}(s) g_{s}\right) \mathrm{d} \tilde{\mu}_{s} .
\end{aligned}
$$

Proof of $\mathrm{BE}_{w} \Rightarrow \mathrm{EVI}_{w}[6 / 6]$

By combining the above inequalities, we conclude that

$$
\frac{\mathrm{d}}{\mathrm{~d} s} \int_{X} \varphi_{s} \tilde{f}_{s} \mathrm{~d} \mathfrak{m}+\dot{\eta}(s) \frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{Ent}_{\mathfrak{m}}\left(\tilde{\mu}_{s}\right) \leq \frac{\mathrm{c}^{2}(\eta(s))}{2} \dot{\vartheta}(s)^{2}\left|\dot{\mu}_{\vartheta(s)}\right|^{2}
$$

for $s \in(0,1)$.
If we choose $\dot{\vartheta}(s)=\mathrm{c}^{-2}(\eta(s))$, then we can integrate in $s \in(0,1)$ so that, by Kantorovich duality, we finally get

$$
\begin{aligned}
\frac{1}{2} W_{2}^{2}\left(\mathrm{P}_{\eta(1)} \mu_{1}, \mathrm{P}_{\eta(0)} \mu_{0}\right) & -\frac{1}{2 \mathrm{R}(\eta)} W_{2}^{2}\left(\mu_{1}, \mu_{0}\right)+\dot{\eta}(1) \mathrm{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{\eta(1)} \mu_{1}\right) \\
& \leq \dot{\eta}(0) \mathrm{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{\eta(0)} \mu_{0}\right)+\int_{0}^{1} \ddot{\eta}(s) \mathrm{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{\eta(s)} \mu_{\vartheta(s)}\right) \mathrm{d} s
\end{aligned}
$$

where $\mathrm{R}(\eta)=\int_{0}^{1} \mathrm{c}^{-2}(\eta(s)) \mathrm{d} s$.
Since we have no information about $s \mapsto \operatorname{Ent}_{\mathfrak{m}}\left(\mathrm{P}_{\eta(s)} \mu_{\vartheta(s)}\right)$, we choose $\eta(s)=(1-s) t_{0}+s t_{1}$ for $s \in[0,1]$, where $0 \leq t_{0} \leq t_{1}$ are fixed, and we get EVI_{w}.

Thank you for yourc attention!

G. Stefani, "Generalized Bakry-Émery curvature condition and equivalent entropic inequalities in groups", to appear on J. Geom. Anal., preprint available at arXiv:2008. 13731.

Slides available upon request (giorgio.stefani@unibas.ch) or on giorgiostefani.weebly.com.

