Bakry-Émery curvature condition and entropic inequalities on metric-measure groups

Giorgio Stefani

Trento, 2 December 2021

G. Stefani, "Generalized Bakry-Émery curvature condition and equivalent entropic inequalities in groups", to appear on J. Geom. Anal., preprint available at $\underline{arXiv:2008.13731}$.

Warm-up in \mathbb{R}^N

In \mathbb{R}^N the solution of the heat equation

$$\begin{cases} \partial_t f_t = \Delta f_t & \text{on } \mathbb{R}^N \times (0, +\infty) \\ f_0 = f & \text{on } \mathbb{R}^N \end{cases}$$

is given by convolution as $P_t f = p_t * f$, where

$$\mathbf{p}_t(x) = \frac{1}{(4\pi t)^{N/2}} e^{-\frac{|x|^2}{4t}}, \quad x \in \mathbb{R}^N, \ t > 0,$$

is the heat kernel.

Hence we have $\nabla \mathsf{P}_t f = \mathsf{p}_t * (\nabla f) = \mathsf{P}_t \nabla f$, so that

$$\Gamma(\mathsf{P}_t f) = |\nabla \mathsf{P}_t f|^2 = |\mathsf{P}_t \nabla f|^2 \leq \mathsf{P}_t (|\nabla f|^2) = \mathsf{P}_t \Gamma(f)$$

by Jensen's inequality.

Bochner formula and Bakry-Émery CD inequality

Let (\mathbb{M}, g) be a (complete and connected) N-dimensional smooth Riemannian manifold with Laplace-Beltrami operator Δ . The Bochner formula states that $\frac{1}{2} \Delta |\nabla f|_q^2 = \langle \nabla \Delta f, \nabla f \rangle_q + ||\text{Hess} f||_2^2 + \text{Ric}(\nabla f, \nabla f).$

Define

$$\Gamma(f,g) = \langle \nabla f, \nabla g \rangle_{\mathfrak{g}}, \quad \Gamma_2(f,g) = \frac{1}{2} (\Delta \Gamma(f,g) - \Gamma(f,\Delta g) - \Gamma(\Delta f,g)).$$

Then the Bochner formula gives

$$\label{eq:loss_f} \tfrac{1}{2} \, \Delta \Gamma(f) = \Gamma(\Delta f, f) + ||\mathrm{Hess} f||_2^2 + \mathrm{Ric}(\nabla f, \nabla f),$$

so that

$$\Gamma_2(f) = ||\mathsf{Hess} f||_2^2 + \mathsf{Ric}(\nabla f, \nabla f),$$

where $\Gamma(f) = \Gamma(f,f)$ and $\Gamma_2(f) = \Gamma_2(f,f)$ for simplicity.

Using Cauchy-Schwartz inequality, we can estimate

$$||\operatorname{Hess} f||_2^2 \ge \frac{1}{N} (\Delta f)^2,$$

and so we get Bakry-Émery curvature-dimension inequality

$$\mathsf{CD}(K,N) : \mathsf{Ric} \geq K, \ \mathsf{dim} \, \mathbb{M} \leq N \iff \Gamma_2(f) \geq \frac{1}{N} \, (\Delta f)^2 + K \, \Gamma(f).$$

Bakry-Émery pointwise gradient estimate on (M, 9)

Assume that (M, g) satisfies $Ric \geq K$, so that $\Gamma_2(f) \geq K \Gamma(f)$ (take $N = \infty$).

Define $\varphi(s)=P_s\Gamma(P_{t-s}f)$ for $s\in[0,t]$. Then

$$\varphi'(s) = 2P_s\Gamma_2(P_{t-s}f) \stackrel{\mathsf{CD}(K,\infty)}{\geq} 2KP_s\Gamma(P_{t-s}f) = 2K\varphi(s)$$

and thus, by Grönwall inequality,

$$\Gamma(\mathsf{P}_t f) \le e^{-2Kt} \, \mathsf{P}_t \Gamma(f),$$
 (BE)

the Bakry-Emery pointwise gradient estimate for the heat flow. If $\mathbb{M}=\mathbb{R}^N$, then K=0 and we recover the Euclidean case.

Differentiating (BE) at t = 0 we get $CD(K, \infty)$.

This argument works also for the case $N < \infty$ [Wang, 201].

Warm-up in \mathbb{H}^1

On the manifold \mathbb{R}^3 consider the non-commutative group operation

$$p \bullet q = (x, y, z) \bullet (x', y', z') = (x + x', y + y', z + z' + \frac{1}{2}(xy' - yx')).$$

The resulting Lie group $(\mathbb{R}^3, \bullet) \equiv \mathbb{H}^1$ is the (first) Heisenberg group.

There is a family of dilations: $\delta_{\lambda}(p) = (\lambda x, \lambda y, \lambda^2 z)$ for $\lambda > 0$.

The Haar measure is the Lebesgue measure $\mathcal{L}^3 = dx dy dz$.

The tangent space is spanned by

$$X = \partial_x - \tfrac{y}{2} \partial_z, \quad Y = \partial_y + \tfrac{x}{2} \partial_z, \quad Z = [X,Y] = \partial_z.$$

We use the horizontal generators X, Y to define

$$\mathrm{d}_{\mathrm{CC}}(p,q) = \inf \biggl\{ \int_0^1 \|\dot{\gamma}_s\|_{\mathbb{H}^1} \, \mathrm{d}s : \gamma_0 = p, \ \gamma_1 = q, \ \dot{\gamma}_s \in \mathrm{Span}\{X_{\gamma_s},Y_{\gamma_s}\} \biggr\}.$$

The function d_{CC} is the Carnot-Carathéodory (CC) distance [Chow-Rashevskii].

We work with the (not-that-bad) metric-measure space $(\mathbb{H}^1, \mathbf{d}_{\mathbb{CC}}, \mathscr{L}^3)$.

What about a BE gradient estimate in \mathbb{H}^1 ?

The canonical sub-Laplacian in \mathbb{H}^1 is $\Delta_{\mathbb{H}^1}=X^2+Y^2$, which is not elliptic. But $\Delta_{\mathbb{H}^1}$ is hypoelliptic, so the fundamental solution \mathbf{p}_t of $\partial_t-\Delta_{\mathbb{H}^1}$ is smooth [Hörmander]. In \mathbb{H}^1 the solution of the (sub-elliptic) heat equation

$$\begin{cases} \partial_t f_t = \Delta_{\mathbb{H}^1} f_t & \text{on } \mathbb{R}^3 \times (0, +\infty) \\ f_0 = f & \text{on } \mathbb{R}^3 \end{cases}$$

is thus given by group convolution as

$$\mathsf{P}_t f(p) = \mathsf{p}_t \star f(p) = \int_{\mathbb{R}^3} \mathsf{p}_t(q^{-1}p) \, f(q) \, \mathrm{d}q = \int_{\mathbb{R}^3} \mathsf{p}_t(q) \, f(pq^{-1}) \, \mathrm{d}q$$

The horizontal gradient $abla_{\mathbb{H}^1}=(X,Y)$ is only left-invariant, so

$$\nabla_{\mathbb{H}^1}\mathsf{P}_tf=\nabla_{\mathbb{H}^1}(\mathsf{p}_t\star f)=(\nabla_{\mathbb{H}^1}\mathsf{p}_t)\star f \textcolor{red}{\neq} \mathsf{p}_t\star (\nabla_{\mathbb{H}^1}f)=\mathsf{P}_t(\nabla_{\mathbb{H}^1}f).$$

Theorem (Driver - Melcher, 2005)

There exists $C_{\mathbb{H}^1} > 1$ such that $\Gamma^{\mathbb{H}^1}(\mathsf{P}_t f) \leq C_{\mathbb{H}^1}^2 \mathsf{P}_t \Gamma^{\mathbb{H}^1}(f)$.

This is a weak BE gradient estimate in \mathbb{H}^1 , so no differentiation at time t=0!

Wasserstein distance

Let (X, \mathbf{d}) be a Polish (geodesic) metric space. We endow the set

$$\mathscr{P}_2(X) = \left\{ \mu \in \mathscr{P}(X) : \int_X \mathsf{d}(x, x_0)^2 \, \mathsf{d}\mu(x) < +\infty, \ x_0 \in X \right\}$$

with the Wasserstein distance

$$W_2^2(\mu,\nu) = \inf \biggl\{ \int_{X\times X} \mathrm{d}^2(x,y) \, \mathrm{d}\pi : \pi(x,y) \in \mathrm{Plan}(\mu,\nu) \biggr\},$$

where

$$\mathsf{Plan}(\mu,\nu) = \{ \pi \in \mathscr{P}(X \times X) : (p_1)_{\#}\pi = \mu, \ (p_2)_{\#}\pi = \nu \}.$$

Fact: $(\mathscr{P}_2(X), W_2)$ is a Polish (geodesic) metric space.

By Kantorovich duality formula [Fenchel-Rockafellar duality principle]

$$\frac{1}{2}\,W_2^2(\mu,\nu) = \sup\biggl\{\int_X Q_1\varphi\,\mathrm{d}\mu - \int_X \varphi\,\mathrm{d}\nu: \varphi \in \mathrm{Lip}(X) \text{ with bounded support}\biggr\}$$

where

$$Q_s\varphi(x) = \inf_{y \in X} \varphi(y) + \frac{d^2(y, x)}{2s}$$

for s>0 with $Q_0\varphi=\varphi$ is the Hopf-Lax semigroup.

Kuwada duality

Assume $(X, \mathbf{d}) = (\mathbb{M}, \mathbf{g})$. We have another equivalent characterization of $\mathrm{Ric} \geq K$.

Theorem (von Renesse - Sturm, 2005)

$$\Gamma(\mathsf{P}_t f) \leq e^{-2Kt}\,\mathsf{P}_t \Gamma(f) \iff W_2(\mathsf{P}_t \mu, \mathsf{P}_t \nu) \leq e^{-Kt}\,W_2(\mu, \nu)$$

A similar result is available for $(X, d) = (\mathbb{H}^1, d_{CC})$.

Theorem (Kuwada, 2010)

$$\Gamma^{\mathbb{H}^1}(\mathsf{P}_t f) \leq C_{\mathbb{H}^1}^2 \, \mathsf{P}_t \Gamma^{\mathbb{H}^1}(f) \iff W_2(\mathsf{P}_t \mu, \mathsf{P}_t \nu) \leq C_{\mathbb{H}^1} \, W_2(\mu, \nu)$$

Entropy

On (X, \mathbf{d}) , put a (non-negative, σ -finite and Borel) measure \mathbf{m} . Assume that

$$\exists A,B>0 \quad : \quad \mathfrak{m}\left(\left\{x \in X : \mathsf{d}(x,x_0) < r\right\}\right) \leq Ae^{Br^2}. \tag{exp.ball}$$

The (Boltzmann) entropy $\operatorname{Ent}_{\mathfrak{m}} \colon \mathscr{P}_2(X) \to (-\infty, +\infty]$ is

$$\operatorname{Ent}_{\mathfrak{m}}(\mu) = \begin{cases} \int_{X} \varrho \log \varrho \, \mathrm{d}\mathfrak{m} & \text{if } \mu = \varrho \mathfrak{m} \in \mathscr{P}_{2}(X), \\ +\infty & \text{otherwise}. \end{cases}$$

Assumption (exp.ball) ensures that $\operatorname{Ent}(\mu) > -\infty$ for all $\mu \in \mathscr{P}_2(X)$.

If
$$(X, \mathsf{d}, \mathfrak{m}) = (\mathbb{M}, \mathsf{g})$$
 with Ric $\geq K$, then Bishop volume comparison Theorem \Rightarrow (exp.ball).

If
$$(X,\mathsf{d},\mathfrak{m})=(\mathbb{H}^1,\mathsf{d}_{\mathrm{CC}},\mathscr{L}^3)$$
, then group structure and dilations \Rightarrow (exp.ball),

because

$$\mathscr{L}^3(B_{\operatorname{CC}}(p,r)) = \mathscr{L}^3(B_{\operatorname{CC}}(0,r)) = \mathscr{L}^3(\delta_r(B_{\operatorname{CC}}(0,1))) = r^4 \mathscr{L}^3(B_{\operatorname{CC}}(0,1)).$$

Geodesic convexity of entropy and $CD(K, \infty)$

Assume $(X, d, \mathfrak{m}) = (\mathbb{M}, g)$. We have yet another equivalence with Ric $\geq K$.

where $s \mapsto \mu_s$ is any (constant unit speed) W_2 -geodesic joining μ_0 and μ_1 .

Theorem (von Renesse - Sturm, 2005)

ANY metric-measure space.

$$\operatorname{Ric} \geq K \iff \operatorname{Ent}_{\mathfrak{m}}(\mu_s) \leq (1-s)\operatorname{Ent}_{\mathfrak{m}}(\mu_0) + s\operatorname{Ent}_{\mathfrak{m}}(\mu_1) - \tfrac{K}{2}s(1-s)\,W_2^2(\mu_0,\mu_1)$$

Observation [Lott-Villani & Sturm]: the W_2 -geodesic K-convexity of $\operatorname{Ent}_{\mathfrak{m}}$ does NOT need the smoothness of $(\mathbb{M}, 9)$, it ONLY needs d and d. Hence it makes sense in

<u>Definition</u>: (X, d, \mathfrak{m}) is $CD(K, \infty)$ if $Ent_{\mathfrak{m}}$ is W_2 -geodesic K-convex.

<u>Bad news</u>: $(\mathbb{H}^1, d_{\mathbb{CC}}, \mathscr{L}^3)$ does <u>not</u> satisfy the $CD(K, \infty)$ property! [Juillet, 2009]

On $(\mathbb{H}^1, \mathsf{d}_{\mathbb{CC}}, \mathscr{L}^3)$ it actually holds [Balogh-Kristaly-Sipos, 2018]

$$\operatorname{Ent}_{\mathscr{L}^3}(\mu_s) \leq (1-s)\operatorname{Ent}_{\mathscr{L}^3}(\mu_0) + s\operatorname{Ent}_{\mathscr{L}^3}(\mu_1) + w(s)$$

where $w(s) = -2\log\left((1-s)^{(1-s)}s^s\right)$ for $s \in [0,1]$ (concave correction).

Heat flow in (X, d, \mathfrak{m})

We now work in a metric-measure space $(X, \mathbf{d}, \mathfrak{m})$. The Cheeger energy is

$$\mathrm{Ch}(f)=\inf\biggl\{\liminf_n\int_X|\mathrm{D}f_n|^2\,\mathrm{d}\mathfrak{m}:f_n\to f\text{ in }\mathrm{L}^2(X,\mathfrak{m}),\ f_n\in\mathrm{Lip}(X)\biggr\}.$$

Here $|\mathsf{D} f|(x) = \limsup_{y \to x} \frac{|f(y) - f(x)|}{\mathsf{d}(x,y)}$ denotes the slope of $f \in \mathsf{Lip}(X;\mathbb{R})$.

<u>Properties</u>: Cheeger energy is convex, l.s.c. and its domain $W^{1,2}(X, \mathbf{d}, \mathbf{m})$ is dense.

The heat flow in $(X, \mathsf{d}, \mathfrak{m})$ is the (Hilbertian) gradient flow of Ch in $L^2(X, \mathfrak{m})$: for $f_0 \in L^2(X, \mathfrak{m}), \exists \, t \mapsto f_t = \mathsf{P}_t f_0 \in \mathsf{Lip}_\mathsf{loc}((0, +\infty); \mathsf{L}^2(X, \mathfrak{m}))$ such that

$$f_t \underset{t \to 0}{\longrightarrow} f_0 \text{ in } \mathsf{L}^2(X,\mathfrak{m}) \qquad \text{and} \qquad \frac{\mathrm{d}}{\mathrm{d}t} f_t \in -\partial^-\mathsf{Ch}(f_t) \text{ for a.e. } t > 0.$$

The Laplacian $-\Delta_{d,\mathfrak{m}}f\in\partial^-\mathsf{Ch}(f)$ is the element of minimal $\mathsf{L}^2(X,\mathfrak{m})$ -norm.

Non-smooth Calculus on $(X, \mathbf{d}, \mathfrak{m})$

Theorem (Ambrosio - Gigli - Savaré, 2014)

Any $f \in W^{1,2}(X, d, \mathfrak{m})$ has a (unique) weak gradient $|Df|_w \in L^2(X, \mathfrak{m})$ such that

$$\mathsf{Ch}(f) = \frac{1}{2} \int_X |\mathsf{D} f|_w^2 \, \mathsf{d} \mathfrak{m}.$$

Theorem (Ambrosio - Gigli - Savaré, 2014)

 $|Df|_w$ behaves like the 'modulus of the gradient':

- locality: $|Df|_w = |Dg|_w$ m-a.e. on $\{f g = c\}$;
- Leibniz rule: $|D(fg)|_w \le |f| |Dg|_w + |Df|_w |g|$;
- chain rule: $|\mathsf{D}\varphi(f)|_w \leq |\varphi'(f)| \, |\mathsf{D}f|_w$;
- approximation: $\operatorname{Lip}_b(X) \cap \operatorname{L}^2(X,\mathfrak{m})$ is dense in energy in $\operatorname{W}^{1,2}(X,\operatorname{d},\mathfrak{m})$.

Quadratic Cheeger energy

We say that Ch is quadratic if Ch(f+g) + Ch(f-g) = 2Ch(f) + 2Ch(g).

<u>Fact I</u>: Ch is quadratic $\Rightarrow W^{1,2}(X,d,\mathfrak{m})$ is Hilbert and P_t is linear.

Fact 2: Ch is quadratic $\Rightarrow \Gamma(f) = |Df|_w^2$ is quadratic.

Theorem

 $\Gamma(f,g) = |\mathsf{D}(f+g)|_w^2 - |\mathsf{D}f|_w^2 - |\mathsf{D}g|_w^2$ is 'the scalar product of gradients':

- Leibniz rule: $\Gamma(fg,h) = g \Gamma(f,h) + f \Gamma(g,h)$;
- chain rule: $\Gamma(\varphi(f),g)=\varphi'(f)\,\Gamma(f,g)$.

Theorem

If Ch is quadratic then the (Dirichlet) energy $\mathcal{E}(f)=2\mathsf{Ch}(f)$ satisfies

$$\mathcal{E}(f,g) = \int_X \Gamma(f,g) \, d\mathbf{m} = -\int_X g \, \Delta_{d,\mathfrak{m}} f \, d\mathfrak{m}.$$

The Laplacian $\Delta_{d,m}$ satisfies the chain rule

$$\Delta_{\mathsf{d},\mathfrak{m}}(\varphi \circ f) = \varphi'(f) \, \Delta_{\mathsf{d},\mathfrak{m}} f + \varphi''(f) \, \Gamma(f).$$

Equivalence in $RCD(K, \infty)$ spaces

<u>Definition</u>: (X, d, \mathfrak{m}) is $RCD(K, \infty)$ if it is $CD(K, \infty)$ and Ch is quadratic. [AGS]

Theorem (many people...)

Assume (X, d, \mathfrak{m}) has a quadratic Ch. TFAE:

$$\mathsf{BE}(K,\infty)$$
: $\Gamma(\mathsf{P}_t f) \le e^{-2Kt} \, \mathsf{P}_t \Gamma(f)$

Kuwada: $W_2(\mathsf{P}_t\mu,\mathsf{P}_t\nu) \leq e^{-Kt} W_2(\mu,\nu)$

$$\mathsf{CD}(K,\infty)$$
: $\mathsf{Ent}_{\mathfrak{m}}(\mu_s) \leq (1-s)\mathsf{Ent}_{\mathfrak{m}}(\mu_0) + s\,\mathsf{Ent}_{\mathfrak{m}}(\mu_1) - \frac{K}{2}s(1-s)\,W_2^2(\mu_0,\mu_1)$

<u>Remark</u>: EVI_K stands for Evolution Variational Inequality and encodes the fact that the heat flow is the <u>metric gradient flow</u> of the entropy in the Wasserstein space.

Non-CD (K, ∞) spaces: the Carnot groups

A Carnot group $\mathbb G$ is a connected, simply connected, stratified Lie group with

$$\mathsf{Lie}(\mathbb{G}) = V_1 \oplus V_2 \oplus \cdots \oplus V_{\kappa}, \quad V_i = [V_1, V_{i-1}], \quad [V_1, V_{\kappa}] = \{0\}.$$

By Campbell-Hausdorff formula, $\mathbb{G} \sim (\mathbb{R}^n,\cdot)$ using exponential coordinates.

We call $H\mathbb{G}=V_1$ the horizontal directions. If $V_1=\text{span}\{X_1,\ldots,X_m\}$, then $\nabla_{\mathbb{G}}f=\sum_{j=1}^m(X_jf)X_j\in V_1$ and $\Delta_{\mathbb{G}}=\sum_{j=1}^mX_j^2$ (Kohn's sub-Laplacian).

The Carnot-Carathéodory distance of $x,y\in\mathbb{G}$ is

$$\mathrm{d}_{\mathrm{CC}}(x,y)=\inf\biggl\{\int_0^1\|\dot{\gamma}_s\|_{\mathbb{G}}\,ds:\;\gamma_0=x,\;\gamma_1=y,\;\dot{\gamma}_t\in V_1\biggr\}.$$

Then $(\mathbb{G}, \mathsf{d}_{\mathrm{CC}}, \mathscr{L}^n)$ is Polish, geodesic and $\mathscr{L}^n(\mathsf{B}_{\mathrm{CC}}(x,r)) = Cr^Q$, $Q \in \mathbb{N}$.

Example: for \mathbb{H}^1 it is $\kappa=2$, $V_1=\operatorname{span}\{X,Y\}$, $V_2=\operatorname{span}\{Z\}$, Q=4.

Theorem (Ambrosio - S., 2018)

The metric-measure space $(\mathbb{G}, \mathsf{d}_{\mathsf{CC}}, \mathscr{L}^n)$ is not $\mathsf{CD}(K, \infty)!$

Another non-CD (K,∞) space: the SU(2) group

SU(2) = Lie group of 2×2 complex unitary matrices with determinant 1.

Lie algebra $\mathfrak{su}(2)$ = 2×2 complex unitary skew-Hermitian matrices with trace 0.

A basis of $\mathfrak{su}(2)$ is given by the Pauli matrices

$$X = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix},$$

satisfying the relations

$$[X, Y] = 2Z, \quad [Y, Z] = 2X, \quad [Z, X] = 2Y.$$

Similarly as before, we define d_{CC} and $\nabla_{\mathbb{SU}(2)}f = (Xf)X + (Yf)Y$.

Fact: $(SU(2), d_{CC})$ is a Polish geodesic metric space.

Using the cylindric coordinates (for $r\in[0,\frac{\pi}{2})$, $\vartheta\in[0,2\pi]$ and $\zeta\in[-\pi,\pi]$)

$$(r,\vartheta,z)\mapsto \exp(r\cos\vartheta\,X + r\sin\vartheta\,Y)\,\exp(\zeta\,Z) = \begin{pmatrix} e^{i\zeta}\cos r & e^{i(\vartheta-\zeta)}\sin r \\ -e^{-i(\vartheta-\zeta)}\sin r & e^{-i\zeta}\cos r \end{pmatrix}$$

the Haar measure $\sigma \in \mathscr{P}(\mathbb{SU}(2))$ is $\mathrm{d}\sigma = \frac{1}{4\pi^2} \sin(2r) \, \mathrm{d}r \, \mathrm{d}\vartheta \, \mathrm{d}\zeta$.

Why Carnot groups and SU(2)?

Theorem (Melcher, 2008)

Let $\mathbb G$ be a Carnot group. There exists $C_{\mathbb G} \geq 1$ such that $\Gamma^{\mathbb G}(\mathsf{P}_t f) \leq C_{\mathbb G}^2 \ \mathsf{P}_t \Gamma^{\mathbb G}(f)$.

Remark: $C_{\mathbb{G}} = 1 \iff \mathbb{G}$ is commutative [Ambrosio-S., 2018].

Theorem (Baudoin - Bonnefont, 2008)

There exists $C_{\mathbb{SU}(2)} \geq \sqrt{2}$ such that $\Gamma^{\mathbb{SU}(2)}(\mathsf{P}_t f) \leq C_{\mathbb{SU}(2)}^2 e^{-4t} \, \mathsf{P}_t \Gamma^{\mathbb{SU}(2)}(f)$.

Question: BE \iff Kuwada \iff RCD \iff EVI also for $\mathbb G$ and $\mathbb S\mathbb U(2)$?

<u>Fact</u>: [Kuwada, 2009] gives the equivalence with the W_2 -contraction property.

Admissible metric-measure groups

Assume (X, d, \mathfrak{m}) has Ch quadratic.

Definition (Admissible group)

 (X, d, \mathfrak{m}) is an admissible group if:

- the metric space (X, d) is locally compact;
- the set X is a topological group, i.e. $(x,y)\mapsto xy$ and $x\mapsto x^{-1}$ are continuous;
- d is left-invariant, i.e. d(zx, zy) = d(x, y) for all $x, y, z \in X$;
- \mathfrak{m} is a left-invariant Haar measure, i.e. \mathfrak{m} is a Radon measure such that $\mathfrak{m}(xE)=\mathfrak{m}(E)$ for all $x\in X$ and all Borel set $E\subset X$;
- X is unimodular, i.e. \mathfrak{m} is also right-invariant.

Remark: Carnot groups and SU(2) are admissible groups.

Main result

Let c: $[0, +\infty) \to (0, +\infty)$ be such that c, $c^{-1} \in L^{\infty}([0, T])$ for all T > 0.

<u>Idea</u>: c is the curvature function and generalizes $t \mapsto e^{-Kt}$.

 $\underline{\text{Examples}} : \mathbf{c}(t) = C_{\mathbb{G}} \text{ for Carnot groups; } \mathbf{c}(t) = C_{\mathbb{SU}(2)} e^{-2t} \text{ for } \mathbb{SU}(2).$

Define $R(a,b) = \int_0^1 c^{-2}((1-s)a + sb) ds$ for $0 \le a \le b$.

Theorem (S., 2020)

Let (X, d, \mathfrak{m}) be an admissible group + some technical hypotheses. TFAE:

$$\mathsf{BE}_{\boldsymbol{w}} \colon \Gamma(\mathsf{P}_t f) \le \mathsf{c}^2(t) \, \mathsf{P}_t \Gamma(f)$$

Kuwada:
$$W_2(P_t\mu, P_t\nu) \leq c(t) W_2(\mu, \nu)$$

$$\begin{split} \mathsf{CD}_{\pmb{w}} \colon \mathsf{Ent}_{\mathfrak{m}}(\mathsf{P}_{t+h}\mu_s) & \leq (1-s)\,\mathsf{Ent}_{m}(\mathsf{P}_{t}\mu_0) + s\,\mathsf{Ent}_{\mathfrak{m}}(\mathsf{P}_{t}\mu_1) \\ & + \frac{s(1-s)}{2h}\left(\frac{1}{\mathsf{R}(t,t+h)}\,W_2^2(\mu_0,\mu_1) - W_2^2(\mathsf{P}_{t}\mu_0,\mathsf{P}_{t}\mu_1)\right) \\ \mathsf{for}\ t \geq 0 \ \mathsf{and}\ h > 0, \ \mathsf{with}\ s \mapsto \mu_s \ \mathsf{a}\ W_2\text{-geodesic} \end{split}$$

$$\begin{split} \text{EVI}_{\pmb{w}} \colon W_2^2(\mathsf{P}_{t_1}\mu_1,\mathsf{P}_{t_0}\mu_0) - \tfrac{W_2^2(\mu_1,\mu_0)}{\mathsf{R}(t_0,t_1)} &\leq 2(t_1-t_0) \Big(\mathsf{Ent}_{\mathfrak{m}}(\mathsf{P}_{t_0}\mu_0) - \mathsf{Ent}_{\mathfrak{m}}(\mathsf{P}_{t_1}\mu_1)\Big) \\ \text{for } 0 &\leq t_0 \leq t_1 \end{split}$$

Comments

$$\begin{split} \text{CD}_{\pmb{w}} \colon \operatorname{Ent}_{\mathfrak{m}}(\mathsf{P}_{t+h}\mu_s) & \leq (1-s)\operatorname{Ent}_{m}(\mathsf{P}_{t}\mu_0) + s\operatorname{Ent}_{\mathfrak{m}}(\mathsf{P}_{t}\mu_1) \\ & + \frac{s(1-s)}{2h}\left(\frac{1}{\mathsf{R}(t,t+h)}\,W_2^2(\mu_0,\mu_1) - W_2^2(\mathsf{P}_{t}\mu_0,\mathsf{P}_{t}\mu_1)\right) \\ & \text{for } t \geq 0 \text{ and } h > 0 \end{split}$$

$$\begin{split} & \text{EVI}_{\pmb{w}} \colon W_2^2(\mathsf{P}_{t_1}\mu_1,\mathsf{P}_{t_0}\mu_0) - \frac{W_2^2(\mu_1,\mu_0)}{\mathsf{R}(t_0,t_1)} \leq 2(t_1-t_0) \Big(\mathsf{Ent}_{\mathfrak{m}}(\mathsf{P}_{t_0}\mu_0) - \mathsf{Ent}_{\mathfrak{m}}(\mathsf{P}_{t_1}\mu_1) \Big) \\ & \text{for } 0 \leq t_0 \leq t_1 \end{split}$$

- I. The equivalence $BE_w \iff Kuwada$ is known, see [Kuwada, 2009] and [Ambrosio Gigli Savaré, 2015], but we (re)do the proof because of some technical issues.
- 2. If t=0 in CD_w then $\mathrm{Ent}_{\mathfrak{m}}(\mathsf{P}_h\mu_s) \leq (1-s)\,\mathrm{Ent}_m(\mu_0) + s\,\mathrm{Ent}_{\mathfrak{m}}(\mu_1) + \frac{A(h)}{2}\,s(1-s)\,W_2^2(\mu_0,\mu_1)$ with $A(h) = \frac{\mathsf{R}(0,h)^{-1}-1}{h}$ for h>0.
- 3. $CD_w \Rightarrow Kuwada$ is easy: multiply by h > 0 and then send $h \to 0^+$.
- 4. $EVI_w \Rightarrow CD_w$ follows from a general argument, see [Daneri Savaré, 2008].
- 5. We only need to prove ${\sf BE}_w\Rightarrow {\sf EVI}_w$. The proof is an adaptation of [Ambrosio Gigli Savaré, 2015] and [Erbar Kuwada Sturm, 2015].

Other comments and futurama

$$\begin{split} & \operatorname{CD}_{\mathbf{w}} \colon \operatorname{Ent}_{\mathfrak{m}}(\mathsf{P}_{t+h}\mu_s) \leq (1-s) \operatorname{Ent}_{m}(\mathsf{P}_{t}\mu_0) + s \operatorname{Ent}_{\mathfrak{m}}(\mathsf{P}_{t}\mu_1) \\ & \qquad \qquad + \frac{s(1-s)}{2h} \left(\frac{1}{\mathsf{R}(t,t+h)} \, W_2^2(\mu_0,\mu_1) - W_2^2(\mathsf{P}_{t}\mu_0,\mathsf{P}_{t}\mu_1) \right) \\ & \qquad \qquad \text{for } t \geq 0 \text{ and } h > 0 \end{split}$$

$$\begin{aligned} \text{EVI}_{\pmb{w}} \colon W_2^2(\mathsf{P}_{t_1}\mu_1,\mathsf{P}_{t_0}\mu_0) - \frac{W_2^2(\mu_1,\mu_0)}{\mathsf{R}(t_0,t_1)} &\leq 2(t_1-t_0) \Big(\mathsf{Ent}_{\mathfrak{m}}(\mathsf{P}_{t_0}\mu_0) - \mathsf{Ent}_{\mathfrak{m}}(\mathsf{P}_{t_1}\mu_1)\Big) \\ \text{for } 0 &\leq t_0 \leq t_1 \end{aligned}$$

- I. We need the group structure of X to exploit the de-singularization property of the convolution: $\rho \star \mu \ll \mathfrak{m}$. Can we avoid this assumption? Example: metric graphs.
- Note: $\mathsf{BE}_w \Rightarrow \mathsf{P}_t \mu \ll \mathfrak{m}$, but the W_2 -metric velocity of $s \mapsto \mu_s^t = \mathsf{P}_t \mu_s$ cannot be related to the one of $s \mapsto \mu_s$ if $\mathsf{c}(0+) > 1$ (example: Carnot groups and $\mathsf{SU}(2)!$).
- 2. Consider a sub-Riemannian manifold $\mathbb M$ (possibly, without a group structure). Is there a BE $_w$ inequality also encoding information about the dimension of $\mathbb M$?
- 3. $RCD(K, \infty)$ and EVI_K imply several nice properties about (X, d, \mathfrak{m}) (MCP, gradient flows, m-GH stability,...). What can we deduce from RCD_w and EVI_w ?
- 4. W_2 -contractions are also known for Markovian diffusion semigroup associated to $L=\Delta+Z$ with $Z\in C^1$ on (\mathbb{M},g) . Can we extend the result to this case?

Proof of $BE_w \Rightarrow EVI_w$ [1/6]

Let $s \in [0,1]$ and assume $s \mapsto \mu_s = f_s \mathfrak{m}$ is joining $\mu_0, \mu_1 \in \mathscr{P}_2(X)$.

Define a new curve $s\mapsto \tilde{\mu}_s=\tilde{f}_s\mathfrak{m}$ as

$$\tilde{\mu}_s = \mathsf{P}_{\eta(s)} \mu_{\vartheta(s)}, \text{ so that } \tilde{f}_s = \mathsf{P}_{\eta(s)} f_{\vartheta(s)},$$

where $\eta \in C^2([0,1];[0,+\infty))$ and $\vartheta \in C^1([0,1];[0,1])$ with $\vartheta(0)=0$ and $\vartheta(1)=1$.

At least formally, we can compute

$$\frac{\mathrm{d}}{\mathrm{d}s}\,\tilde{f}_s = \dot{\eta}(s)\,\Delta\mathsf{P}_{\eta(s)}f_{\vartheta(s)} + \dot{\vartheta}(s)\,\mathsf{P}_{\eta(s)}\dot{f}_{\vartheta(s)}$$

for $s \in (0, 1)$.

Proof of $BE_w \Rightarrow EVI_w$ [2/6]

On the one hand, integrating by parts, we have

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}s} \operatorname{Ent}_{\mathfrak{m}}(\tilde{\mu}_{s}) &= \frac{\mathrm{d}}{\mathrm{d}s} \int_{X} \tilde{f}_{s} \log \tilde{f}_{s} \, \mathrm{d}\mathfrak{m} \\ &= \int_{X} (1 + \log \tilde{f}_{s}) \, \frac{\mathrm{d}}{\mathrm{d}s} \, \tilde{f}_{s} \, \mathrm{d}\mathfrak{m} \\ &= -\dot{\eta}(s) \int_{X} p'(\tilde{f}_{s}) \, \Gamma(\tilde{f}_{s}) \, \mathrm{d}\mathfrak{m} + \dot{\vartheta}(s) \int_{X} p(\tilde{f}_{s}) \, \mathsf{P}_{\eta(s)} \dot{f}_{\vartheta(s)} \, \mathrm{d}\mathfrak{m} \end{split}$$

for $s \in (0,1)$, where $p(r) = 1 + \log r$ for all r > 0.

Since
$$p'(r)=r(p'(r))^2$$
, by the chain rule $\Gamma(\varphi(f))=(\varphi'(f))^2\,\Gamma(f)$, we can write

$$\frac{\mathrm{d}}{\mathrm{d}s}\operatorname{Ent}_{\mathfrak{m}}(\tilde{\mu}_{s}) = -\dot{\eta}(s)\int_{X}\Gamma(g_{s})\,\mathrm{d}\tilde{\mu}_{s} + \dot{\vartheta}(s)\int_{X}\dot{f}_{\vartheta(s)}\,\mathsf{P}_{\eta(s)}g_{s}\,\mathrm{d}\mathfrak{m}$$

for $s \in (0,1)$, where $g_s = p(\tilde{f}_s)$ for brevity.

Proof of $BE_w \Rightarrow EVI_w$ [3/6]

On the other hand, by Kantorovich duality, we have

$$\frac{1}{2}\,W_2^2(\mu,\nu) = \sup\biggl\{\int_X Q_1\varphi\,\mathrm{d}\mu - \int_X \varphi\,\mathrm{d}\nu: \varphi \in \mathrm{Lip}(X) \text{ with bounded support}\biggr\},$$

where

$$Q_s \varphi(x) = \inf_{y \in X} \varphi(y) + \frac{\mathsf{d}^2(y,x)}{2s}, \quad \text{for } x \in X \text{ and } s > 0,$$

is the Hopf-Lax infimum-convolution semigroup.

Recalling that $\varphi_s=Q_s\varphi$ solves the Hamilton-Jacobi equation $\partial_s\varphi_s+\frac{1}{2}\,|\mathsf{D}\varphi_s|^2=0$, again integrating by parts, we can compute

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}s} \int_X \varphi_s \, \tilde{f}_s \, \mathrm{d}\mathfrak{m} &= \int_X \partial_s \varphi_s \, \mathrm{d}\tilde{\mu}_s + \int_X \varphi_s \, \frac{\mathrm{d}}{\mathrm{d}s} \tilde{f}_s \, \mathrm{d}\mathfrak{m} \\ &= -\frac{1}{2} \int_X \Gamma(\varphi_s) \, \mathrm{d}\tilde{\mu}_s - \dot{\eta}(s) \int_X \Gamma(\varphi_s, \tilde{f}_s) \, \mathrm{d}\mathfrak{m} \\ &+ \dot{\vartheta}(s) \int_X \dot{f}_{\vartheta(s)} \, \mathsf{P}_{\eta(s)} \varphi_s \, \mathrm{d}\mathfrak{m} \end{split}$$

for $s \in (0, 1)$.

Proof of $BE_w \Rightarrow EVI_w$ [4/6]

Combining the above inequalities, we get

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}s} \int_X \varphi_s \, \tilde{f}_s \, \mathrm{d}\mathfrak{m} + \dot{\eta}(s) \, \frac{\mathrm{d}}{\mathrm{d}s} \, \mathrm{Ent}_{\mathfrak{m}}(\tilde{\mu}_s) &\leq -\frac{1}{2} \int_X \left(\Gamma(\varphi_s) + \dot{\eta}(s)^2 \, \Gamma(g_s) \right) \mathrm{d}\tilde{\mu}_s \\ &- \dot{\eta}(s) \int_X \Gamma(\varphi_s, \tilde{f}_s) \, \mathrm{d}\mathfrak{m} + \dot{\vartheta}(s) \int_X \dot{f}_{\vartheta(s)} \, \mathsf{P}_{\eta(s)}(\varphi_s + \dot{\eta}(s) \, g_s) \, \mathrm{d}\mathfrak{m} \end{split}$$

for $s\in(0,1)$, forgetting the term $-\frac{\dot{\eta}(s)^2}{2}\int_X\Gamma(g_s)\,\mathrm{d}\tilde{\mu}_s{\le0}$

Now $\Gamma(\varphi_s+\dot{\eta}(s)\,g_s)=\Gamma(\varphi_s)+2\,\dot{\eta}(s)\,\Gamma(\varphi_s,g_s)+\dot{\eta}(s)^2\,\Gamma(g_s)$ and, by the chain rule, $\Gamma(\varphi_s,g_s)=\Gamma(\varphi_s,p(\tilde{f}_s))=p'(\tilde{f}_s)\,\Gamma(\varphi_s,\tilde{f}_s).$ Since $r\,p'(r)=1$, we have

$$\int_X \Gamma(\varphi_s, g_s) \, \mathrm{d}\tilde{\mu}_s = \int_X \tilde{f}_s \, p'(\tilde{f}_s) \, \Gamma(\varphi_s, \tilde{f}_s) \, \mathrm{d}\mathfrak{m} = \int_X \Gamma(\varphi_s, \tilde{f}_s) \, \mathrm{d}\mathfrak{m},$$

and thus the above inequality simplifies to

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}s} \int_X \varphi_s \, \tilde{f}_s \, \mathrm{d}\mathfrak{m} + \dot{\eta}(s) \, \frac{\mathrm{d}}{\mathrm{d}s} \, \mathrm{Ent}_{\mathfrak{m}}(\tilde{\mu}_s) & \leq -\frac{1}{2} \int_X \Gamma(\varphi_s + \dot{\eta}(s) \, g_s) \, \mathrm{d}\tilde{\mu}_s \\ & + \dot{\vartheta}(s) \int_X \dot{f}_{\vartheta(s)} \, \mathsf{P}_{\eta(s)}(\varphi_s + \dot{\eta}(s) \, g_s) \, \mathrm{d}\mathfrak{m} \end{split}$$

for $s \in (0, 1)$.

Proof of $BE_w \Rightarrow EVI_w$ [5/6]

At this point, the crucial information we need to know about the chosen curve $s\mapsto \mu_s=f_s\mathfrak{m}$ is that

$$\int_X \dot{f}_s \, \psi \, \mathrm{d} \mathfrak{m} \leq |\dot{\mu}_s| \, \left(\int_X \Gamma(\psi) \, \mathrm{d} \mu_s \right)^{\frac{1}{2}}$$

for all sufficiently 'nice' functions ψ , where $|\dot{\mu}_s| = \lim_{h \to 0} \frac{W_2(\mu_{s+h}, \mu_s)}{h}$ is the metric velocity of the curve $s \mapsto \mu_s$ with respect to the Wasserstein distance.

With this property at disposal, we may choose $\psi=\mathsf{P}_{\eta(s)}(\varphi_s+\dot{\eta}(s)\,g_s)$ and estimate

$$\begin{split} \dot{\vartheta}(s) \int_{X} \dot{f}_{\vartheta(s)} \, \mathsf{P}_{\eta(s)}(\varphi_{s} + \dot{\eta}(s) \, g_{s}) \, \mathrm{d}\mathfrak{m} &= \int_{X} \left(\frac{\mathsf{d}}{\mathsf{d}s} \, f_{\vartheta(s)}\right) \, \mathsf{P}_{\eta(s)}(\varphi_{s} + \dot{\eta}(s) \, g_{s}) \, \mathrm{d}\mathfrak{m} \\ &\leq |\dot{\vartheta}(s)| \, |\dot{\mu}_{\vartheta(s)}| \left(\int_{X} \Gamma(\mathsf{P}_{\eta(s)}(\varphi_{s} + \dot{\eta}(s) \, g_{s})) \, \mathrm{d}\mu_{s}\right)^{\frac{1}{2}} \\ &\leq \frac{\mathsf{c}^{2}(\eta(s))}{2} \, \dot{\vartheta}(s)^{2} \, |\dot{\mu}_{\vartheta(s)}|^{2} + \frac{\mathsf{c}^{-2}(\eta(s))}{2} \, \int_{X} \Gamma(\mathsf{P}_{\eta(s)}(\varphi_{s} + \dot{\eta}(s) \, g_{s})) \, \mathrm{d}\mu_{s} \\ &\leq \frac{\mathsf{c}^{2}(\eta(s))}{2} \, \dot{\vartheta}(s)^{2} \, |\dot{\mu}_{\vartheta(s)}|^{2} + \frac{1}{2} \, \int_{X} \Gamma(\varphi_{s} + \dot{\eta}(s) \, g_{s}) \, \mathrm{d}\tilde{\mu}_{s}. \end{split}$$

Proof of $BE_w \Rightarrow EVI_w$ [6/6]

By combining the above inequalities, we conclude that

$$\frac{\mathrm{d}}{\mathrm{d}s} \int_{V} \varphi_{s} \, \tilde{f}_{s} \, \mathrm{d}\mathfrak{m} + \dot{\eta}(s) \, \frac{\mathrm{d}}{\mathrm{d}s} \, \mathrm{Ent}_{\mathfrak{m}}(\tilde{\mu}_{s}) \leq \frac{\mathrm{c}^{2}(\eta(s))}{2} \, \dot{\vartheta}(s)^{2} \, |\dot{\mu}_{\vartheta(s)}|^{2}$$

for $s \in (0, 1)$.

If we choose $\dot{\vartheta}(s)=\mathbf{c}^{-2}(\eta(s))$, then we can integrate in $s\in(0,1)$ so that, by Kantorovich duality, we finally get

$$\begin{split} \frac{1}{2} \, W_2^2 \big(\mathsf{P}_{\eta(1)} \mu_1, \mathsf{P}_{\eta(0)} \mu_0 \big) - \frac{1}{2 \, \mathsf{R}(\eta)} \, W_2^2 \big(\mu_1, \mu_0 \big) + \dot{\eta}(1) \, \mathsf{Ent}_{\mathfrak{m}} \big(\mathsf{P}_{\eta(1)} \mu_1 \big) \\ & \leq \dot{\eta}(0) \, \mathsf{Ent}_{\mathfrak{m}} \big(\mathsf{P}_{\eta(0)} \mu_0 \big) + \int_0^1 \ddot{\eta}(s) \, \mathsf{Ent}_{\mathfrak{m}} \big(\mathsf{P}_{\eta(s)} \mu_{\vartheta(s)} \big) \, \mathrm{d}s, \end{split}$$

where $R(\eta) = \int_0^1 c^{-2}(\eta(s)) ds$.

Since we have no information about $s\mapsto \operatorname{Ent}_{\mathfrak{m}}(\mathsf{P}_{\eta(s)}\mu_{\vartheta(s)})$, we choose $\eta(s)=(1-s)t_0+st_1$ for $s\in[0,1]$, where $0\leq t_0\leq t_1$ are fixed, and we get $\operatorname{\mathsf{EVI}}_{\boldsymbol{w}}$.

Thank you for your attention!

G. Stefani, "Generalized Bakry-Émery curvature condition and equivalent entropic inequalities in groups", to appear on J. Geom. Anal., preprint available at arXiv:2008.1373.

Slides available upon request (giorgio.stefani@unibas.ch) or on giorgiostefani.weebly.com.