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Euler equations, velocity form

The Euler equations for an incompressible inviscid 2-dimensional fluid are given by
!
"""#

"""$

∂tv + (v ·∇)v +∇p = 0 in (0,+∞)× Ω,

div v = 0 in [0,+∞)× Ω,

v · νΩ = 0 on [0,+∞)× ∂Ω,

v|t=0 = v0 on Ω.

Objects:

• Ω is a sufficiently smooth (possibly unbounded) open set or the flat torus T2;
• v : [0,+∞)× Ω → R2 is the velocity of the fluid;
• p : [0,+∞)× Ω → R is the (scalar) pressure;
• νΩ : ∂Ω → R2 is the inner unit normal to ∂Ω.

Conditions:
• div v = 0 is the incompressibility condition;
• v · νΩ = 0 at the boundary is the no-flow (or slip) condition.

Note: either Ω = R2 or Ω = T2 ⇒ no boundary condition is imposed.
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Euler equations, vorticity form

The vorticity ω : [0,+∞)× Ω → R of the fluid is

ω = curl v

and satisfies
!
""#

""$

∂tω + div(vω) = 0 in (0,+∞)× Ω,

v = Kω in [0,+∞)× Ω,

ω|t=0 = ω0 on Ω.

Biot-Savart law: The relation ω = Kv is the Biot--Savart law, i.e.

v(t, x) = Kω(t, x) =

%

Ω

k(x, y)ω(t, y) dy,

where k : Ω× Ω → R2 is a convolution kernel.

Example: If Ω = R2, then k(x, y) = k2(x− y) with

k2(x) =
1

2π

1

|x|2

&
−x2

x1

'
=

1

2π

x⊥

|x|2 for all x ∈ R2, x ∕= 0.
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Literature: a quick review

Theory of strong solutions is classical (since Lichtenstein 1930).

Existence of weak solutions:
• Yudovich (1963) for L1 ∩ L∞ vorticity
• DiPerna-Majda (1987), Delort (1991), Majda (1993), Vecchi-Wu (1993),

Evans-Müller (1994) for L1 vorticity
• Serfati (1995), Vishik (1999), Taniuchi (2004) for non-decaying vorticity

Uniqueness of weak solutions:
• Yudovich (1963) for L1 ∩ L∞ vorticity
• Yudovich (1995) for unbounded vorticity with Lp-norm mildly growing
• Vishik (1999) for ∞-Besov vorticity

Philosophy: while existence follows the usual pattern

smoothing data → existence of smooth solutions → compactness,

uniqueness is hard, due to non-linearity of Euler equations.

Warning: uniqueness is NOT expected for vorticity in Lp with p < +∞!
• Vishik (2018)
• Bressan-Murray (2020), Bressan-Shen (2021)
• Bruè-Colombo (2021)
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Yudovich's well-posedness for L1 ∩ L∞

Recall the Euler 2D equations in vorticity form:
!
""#

""$

∂tω + div(vω) = 0 in (0,+∞)× Ω,

v = Kω in [0,+∞)× Ω,

ω|t=0 = ω0 on Ω.

(E)

Theorem (Yudovich 1963)

There is a unique weak solution (ω, v) of (E) such that

ω ∈ L∞([0,+∞);L1(R2) ∩ L∞(R2)) v ∈ L∞([0,+∞);Cb(R2;R2))

starting from ω0 ∈ L1(R2) ∩ L∞(R2), v0 = Kω0. Actually, the velocity satisfies

|v(t, x)− v(t, y)| ≲ |x− y| · | log |x− y|| x, y ∈ R2, t ≥ 0.

Proof:
• existence relies on compactness of smooth solutions;
• uniqueness follows from a clever energy method.
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Yudovich's energy method

Assume (ω1, v1) and (ω2, v2) are two weak solutions with same initial datum.

Consider the relative energy

E(t) =

%

R2

|v1(t, x)− v2(t, x)|2 dx for t ≥ 0.

Since v = Kω, then ∇v = (∇K)ω, with ∇K a Calderón-Zygmund operator. Hence

‖∇v‖Lp ≲ p ‖ω‖Lp ≤ Cp for all p ≫ 1

where C > 0 depends on ‖ω‖L1 and ‖ω‖L∞ only.

Exploit the Euler equations in velocity form ∂tv + (v ·∇)v +∇p = 0 to get

d

dt
E(t) ≤ CpE(t)1−1/p for t ∈ [0, T ],

where T > 0 has to be chosen.

By comparison with the maximal solution of the ODE, we get
E(t) ≤ (Ct)p ≤ (CT )p for t ∈ [0, T ],

so that E(t) = 0 for all t ∈ [0, T ] letting p → +∞, provided that CT < 1.
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Yudovich's energy method revised

If ‖ω‖Lp ≲ Θ(p) for p ≫ 1 for some growth function Θ : [1,+∞) → (0,+∞), then

‖∇v‖Lp ≲ p ‖ω‖Lp ≲ pΘ(p) for all p ≫ 1.

Re-doing the same computations, one finds

d

dt
E(t) ≲ E(t)ψΘ

&
1

E(t)

'
for t ∈ [0, T ],

where

ψΘ(r) =

!
#

$

inf
(

1
ε Θ (1/ε) : ε ∈ (0, 1/3)

)
for r ∈ [0, 1),

inf
(

1
ε Θ (1/ε) rε : ε ∈ (0, 1/3)

)
for r ∈ [1,+∞).

To show E(t) = 0 for t ∈ [0, T ], we just need z .→ z ψΘ(1/z) to satisfy
%

0+

dr

rψΘ(1/r)
= +∞,

the well-known Osgood condition.
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Yudovich's well-posedness for Y Θ

We let

Y Θ(Ω) =

!
#

$f ∈
*

p∈[1,+∞)

Lp(Ω) : ‖f‖Y Θ(Ω) = sup
p∈[1,+∞)

‖f‖Lp(Ω)

Θ(p)
< +∞

+
,

-

be the Yudovich space on Ω associated to Θ.

Theorem (Yudovich 1995)

Assume Θ is such that %

0+

dr

rψΘ(1/r)
= +∞.

There is a unique weak solution (ω, v) of (E) such that

ω ∈ L∞([0,+∞);Y Θ(R2)) v ∈ L∞([0,+∞);Cb(R2;R2))

starting from ω0 ∈ Y Θ(R2), v0 = Kω0. Actually, the velocity satisfies

|v(t, x)− v(t, y)| ≲ |x− y| · ψΘ(1/|x − y|3) x, y ∈ R2, t ≥ 0.
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Examples of Θ

Bad news:
• energy method needs sharp tools (Sobolev spaces, CZ theory)
• behavior of ψΘ and its dependence on Θ are quite implicit!

Example: letting logm p = log log . . . log. /0 1
m times

p, Yudovich proved that

Θm(p) ≂ log p log2 p · · · logm p ⇒ ψΘm(r) ≂ log r log2 r · · · logm+1 r.

The Osgood condition is
• true for Θ(p) ≂ log p (actually, for any Θm with m ≥ 1)
• false for Θ(p) ≂ p.

This means that Yudovich's result
• applies for vorticities with singularities of order | log | log |x||
• does not apply for vorticities with singularities of order | log |x|| (e.g., BMO)

Question: is there a more explicit relation between Θ and the modulus of continuity?
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Properties of the kernel: less is more

Recall the Biot-Savart law is given by (dropping time dependence)

v(x) = Kω(x) =

%

Ω

k(x, y)ω(y) dy.

The convolution kernel k : Ω× Ω → R2 satisfies

• decay: |k(x, y)| ≤ C1

|x− y| for all x, y ∈ Ω, x ∕= y;

• oscillation: |k(x, z)− k(y, z)| ≤ C2
|x− y|

|x− z| |y − z| for all x, y, z ∈ Ω, z ∕= x, y;

for some constants C1, C2 > 0.

From the relation v = Kω, we also get
• incompressibility: div(Kω) = 0;
• no-flow: (Kω) · νΩ = 0 at the boundary.

IDEA: try to rely on the above 'metric' properties of k only!

A posteriori: we can even relax the incompressibility property to
• controlled compression: ‖ div(Kω)‖L∞(Ω) ≤ C3‖ω‖L1(Ω)

for some constant C3 > 0.
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Exploit decay and oscillation

Fix x, y ∈ Ω with d = |x− y| < 1. We can split

|Kω(x)−Kω(y)| ≤
%

Ω

|k(x, z)− k(y, z)| |ω(z)| dz

=

2%

Ω\B2(x)

+

%

Ω∩(B2(x)\B2d(x))

+

%

Ω∩B2d(x)

3
|k(x, z)− k(y, z)| |ω(z)| dz.

We can estimate
%

Ω\B2(x)

· · ·
oscillation

≲ |x− y|
%

Ω\B2(x)

|ω(z)|
|x− z| |y − z| dz ≲ |x− y| ‖ω‖L1(Ω)

%

Ω∩(B2(x)\B2d(x))

· · ·
oscillation

≲
%

Ω∩(B2(x)\B2d(x))

|ω(z)|
|x− z|2 dz

%

Ω∩B2d(x)

· · ·
decay
≲

%

Ω∩B2d(x)

|ω(z)|
|x− z| dz +

%

Ω∩B3d(y)

|ω(z)|
|y − z| dz
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Two functions

We need to control

α(d) = sup
x∈Ω

%

Ω∩(B2(x)\B2d(x))

|ω(z)|
|x− z|2 dz and β(d) = sup

x∈Ω

%

Ω∩B3d(x)

|ω(z)|
|x− z| dz

defined for d ∈ (0, 1]. By Hölder's inequality, we have

α(d) ≲
2

sup
x∈Ω

‖ω‖Lp(Ω∩B2(x))

3&% 2

2d

r1−2p′
dr

'1/p′

≲ C

2
22−2p′

2p′ − 2

31/p′ 4
d2−2p′

− 1
51/p′

≲ C pd−2/p

and, similarly,

β(d) ≲
2

sup
x∈Ω

‖ω‖Lp(Ω∩B3(x))

32% 3d

0

r1−p′
dr

31/p′

≲ C

2
32−p′

2− p′

31/p′

d (2 − p′)/p′ ≲ C
p

p− 2
d 1−2/p,

where C = supx∈Ω ‖ω‖Lp(Ω∩B1(x)).
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Regularity of the velocity 1/3

We let

Lp
ul(Ω) =

6
f ∈ Lp

loc(Ω) : ‖f‖Lp

ul(Ω) = sup
x∈Ω

‖f‖Lp(Ω∩B1(x)) < +∞
7

be the uniformly-localized Lp space on Ω. Note that radius = 1 is not restrictive.

Theorem (Hölder continuity)

Let p ∈ (2,+∞). If ω ∈ L1(Ω) ∩ Lp
ul(Ω), then Kω ∈ C

0,1−2/p
b (Ω;R2) with

‖Kω‖L∞(Ω;R2) ≲ max
8
1, 1

p−2

9
(‖ω‖L1(Ω) + ‖ω‖Lp

ul(Ω))

|Kω(x)−Kω(y)| ≲ max
8
1, 1

p−2

9
(‖ω‖L1(Ω)+‖ω‖Lp

ul(Ω)) p |x−y|1−2/p ∀x, y ∈ Ω.

Remark: the result is not a surprise, since (for the Biot-Savart kernel)

CZ theory + Morrey's inequality ⇒ Hölder continuity.

However, our proof is surprising elementary!
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Regularity of the velocity 2/3

We let

Y Θ
ul (Ω) =

!
#

$f ∈
*

p∈[1,+∞)

Lp
ul(Ω) : ‖f‖Y Θ

ul (Ω) = sup
p∈[1,+∞)

‖f‖Lp

ul(Ω)

Θ(p)
< +∞

+
,

-

be the uniformly-localized Yudovich space on Ω associated to Θ.

If ω ∈ L1(Ω) ∩ Y Θ
ul (Ω), then for all p ≥ 3 we have

|Kω(x)−Kω(y)| ≲ max
8
1, 1

p−2

9
(‖ω‖L1(Ω) + ‖ω‖Lp

ul(Ω)) p |x− y|1−2/p

≲ (‖ω‖L1(Ω) + ‖ω‖Y Θ
ul (Ω))Θ(p) p |x− y|1−2/p.

If d = |x− y| ≪ 1, then we can take p = | log d| ≫ 1 and observe that

Θ(p) p |x− y|1−2/p = Θ(| log d|) | log d| d1−
2

| log d| ≂ d | log d|Θ(| log d|)

since d
− 2

| log d| = exp( 2
log d · log d) = e2.
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Regularity of the velocity 3/3

We let the function ϕΘ : [0,+∞) → [0,+∞) be such that ϕΘ(0) = 0 and

ϕΘ(r) =

!
#

$
r (1− log r)Θ(1− log r) for r ∈ (0, e−2]

e−2 3Θ(3) for r > e−2.

We say that ϕΘ is the modulus of continuity associated to Θ and define

C0,ϕΘ

b (Ω;R2) =

6
v ∈ L∞(Ω;R2) : sup

x ∕=y

|v(x)− v(y)|
ϕΘ(|x− y|) < +∞

7
.

Corollary (ϕΘ-continuity)

If ω ∈ L1(Ω) ∩ Y Θ
ul (Ω), then Kω ∈ C0,ϕΘ

b (Ω;R2) with

‖Kω‖L∞(Ω;R2) ≲ ‖ω‖L1(Ω) + ‖ω‖Y Θ
ul (Ω)

|Kω(x)−Kω(y)| ≲ (‖ω‖L1(Ω) + ‖ω‖Y Θ
ul (Ω))ϕΘ(|x− y|) ∀x, y ∈ Ω.

Remark: we recover Yudovich's continuity modulus (e.g., Θm), with NO sharp tools!
15/25



Existence

By definition of ϕΘ, note that%

0+

dr

ϕΘ(r)
=

% +∞ dp

pΘ(p)
.

Theorem (Existence)

Let p ∈ (2,+∞). For any ω0 ∈ L1(Ω) ∩ Lp
ul(Ω), there is a weak solution (ω, v)

of (E) such that
ω ∈ L∞

loc([0,+∞);L1(Ω) ∩ Lp
ul(Ω)) v ∈ L∞

loc([0,+∞);C
0,1−2/p
b (Ω;R2)).

Moreover, if ω0 ∈ L1(Ω) ∩ Y Θ
ul (Ω), then (ω, v) is such that

ω ∈ L∞
loc([0,+∞);L1(Ω) ∩ Y Θ

ul (Ω)) v ∈ L∞
loc([0,+∞);C0,ϕΘ

b (Ω;R2))

and, provided that ϕΘ is Osgood, (ω, v) is Lagrangian.

ODE theory: ϕΘ Osgood ⇒ there is a unique flow X such that d
dtX(t, ·) = v(t,X).

Lagrangian: the solution is such that ω(t, ·) = X(t, ·)#ω0 (push-forward).

Remark: our existence result
• gives modulus of continuity even for Θ not BMO-like (e.g., Θ(p) ≂ pα);
• does not rely on the specific structure of the Biot-Savart kernel.
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Proof of existence 1/2

Warning: we cannot rely on the existence of smooth solutions!

Indeed, the kernel is general, so there are no equations in velocity form.

We have to follow a different strategy:

1) construct a solution in L1 ∩ L∞ via time-stepping argument;
2) construct a solution in L1 ∩ Lp

ul by truncating the initial data;

3) show that the construction preserves the L1 ∩ Y Θ
ul -regularity.

To gain existence, we need a compactness criterion à la Aubin-Lions:
• the proof exploits the Dunford-Pettis, Lusin and Arzelà-Ascoli Theorems;
• we assume weak compactness, while usually one takes strong compactness.
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Proof of existence 2/2

Theorem (Baby Aubin-Lions)

Let T > 0 and let (fn)n∈N ⊂ L∞([0, T ];L1(Ω)) be a bounded sequence which is
equi-integrable in space uniformly in time:
• supn∈N ‖fn‖L∞([0,T ];L1(Ω)) < +∞
• ∀ε > 0 ∃δ > 0 : A ⊂ Ω, |A| < δ ⇒ supn∈N ‖fn‖L∞([0,T ];L1(A)) < ε

• ∀ε > 0 ∃Ωε ⊂ Ω with |Ωε| < +∞ : supn∈N ‖fn‖L∞([0,T ];L1(Ω\Ωε)) < ε.

Assume that, for each ϕ ∈ C∞
c (Ω), the functions Fn[ϕ] : [0, T ] → R, given by

Fn[ϕ](t) =

%

Ω

fn(t, ·)ϕ dx, t ∈ [0, T ],

are uniformly equi-continuous on [0, T ].
Then there exist a subsequence (fnk)k∈N and f ∈ L∞([0, T ];L1(Ω)) such that

lim
k→+∞

%

Ω

fnk(t, ·)ϕ dx =

%

Ω

f(t, ·)ϕ dx

for a.e. t ∈ [0, T ] and all ϕ ∈ L∞(Ω).
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Uniqueness

Theorem (Uniqueness)

Let Θ be such that ϕΘ is concave and Osgood. There is at most one (Lagrangian)
weak solution (ω, v) of (E) such that

ω ∈ L∞
loc([0,+∞);L1(Ω) ∩ Y Θ

ul (Ω)) v ∈ L∞
loc([0,+∞);C0,ϕΘ

b (Ω;R2)),

starting from ω0 ∈ L1(Ω) ∩ Y Θ
ul (Ω), v0 = Kω0.

Remark: our uniqueness result
• recovers (and actually improves) Yudovich's uniqueness theorem;
• is proved in a Lagrangian way, we do not use the energy method;
• does not rely on the specific structure of the Biot-Savart kernel.

Careful: Osgood velocity ⇒ any weak solution is Lagrangian, but this is delicate!

• Ambrosio-Bernard (2008)
• Caravenna-Crippa (2021)
• Clop-Jylhä-Mateu-Orotobig (2019)
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Proof of uniqueness 1/4

Assume (ω1, v1) and (ω2, v2) are two Lagrangian solutions with same initial datum.

We can thus write ωi = Xi(t, ·)#ω0 where Xi is the flow associated to vi, i = 1, 2.

Fix T > 0 and consider t ∈ [0, T ]. We start with the usual splitting

|X1 −X2| ≤
% t

0

|v1(s,X1)− v2(s,X2)| ds

≤
% t

0

|v1(s,X1)− v1(s,X2)| ds+
% t

0

|v1(s,X2)− v2(s,X2)| ds.

The first term is easy, we can use the ϕΘ-continuity and obtain

|v1(s,X1)− v1(s,X2)| ≲ ϕΘ(|X1 −X2|),

with implicit constant depending on ‖ω1‖L∞([0,T ];L1∩Y Θ
ul ).
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Proof of uniqueness 2/4

The second term is delicate. We use v = Kω and the push-forward to get

|v1(s,X2)− v2(s,X2)| = |(Kω1)(s,X2)− (Kω2)(s,X2)|

=

::::
%

Ω

k(X2, y)ω1(s, y) dy −
%

Ω

k(X2, y)ω2(s, y) dy

::::

=

::::
%

Ω

k(X2, X1(s, y))ω0(y) dy −
%

Ω

k(X2, X2(s, y))ω0(y) dy

::::

≤
%

Ω

|k(X2, X1(s, y))− k(X2, X2(s, y))| |ω0(y)| dy.

We combine the two estimates and obtain

|X1 −X2| ≤
% t

0

ϕΘ(|X1 −X2|) dt

+

% t

0

%

Ω

|k(X2, X1(s, y))− k(X2, X2(s, y))| |ω0(y)| dy dt.

Now choose the finite measure µ = ω̄L 2, with ω̄ = |ω0|+ η and 0 < η ∈ L1 ∩ L∞.
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Proof of uniqueness 3/4

We integrate with respect to µ. By Tonelli Theorem, we can estimate
%

Ω

%

Ω

|k(X2(s, x), X1(s, y))− k(X2(s, x), X2(s, y))| |ω0(y)| dy dµ(x)

=

%

Ω

|ω0(y)|
%

Ω

|k(X2(s, x), X1(s, y))− k(X2(s, x), X2(s, y))| dµ(x) dy

=

%

Ω

|ω0(y)|
%

Ω

|k(x,X1(s, y))− k(x,X2(s, y))|X2(s, ·)#ω̄(x) dx dy

(!)

≲
%

Ω

|ω0(y)|ϕΘ(|X1(s, y)−X2(s, y)|) dy

≤
%

Ω

ϕΘ(|X1(s, y)−X2(s, y)|) dµ(y).

Inequality (!) follows from the same computations for the ϕΘ-continuity of velocity.

The implicit constant depends on ‖ω̄‖L∞([0,T ];L1∩Y Θ
ul ). But ω̄ = |ω0|+ η, so we can

choose η ∈ L1 ∩ L∞ to let the constant depend on ‖ω0‖L∞([0,T ];L1∩Y Θ
ul ) only!
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Proof of uniqueness 4/4

In conclusion, we get

%

Ω

|X1 −X2| dµ ≲
% t

0

%

Ω

ϕΘ(|X1 −X2|) dµ dt.

But ϕΘ is concave and Osgood, so that

%

Ω

ϕΘ(|X1 −X2|) dµ
Young
≤ ϕΘ

&%

Ω

|X1 −X2| dµ
'

and thus

ξ(t) ≤
% t

0

ϕΘ(ξ(s)) dt, ξ(s) =

%

Ω

|X1(s, ·)−X2(s, ·)| dµ,

imply that X1 = X2 for all t ∈ [0, T ], which means ω1 = ω2 and so v1 = v2.
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Futurama

Project 1: apply this elementary approach to Vlasov-Poisson system
!
""""#

""""$

∂tf + v ·∇xf + E ·∇vf = 0

E = K-

- =

%
f dv,

in collaboration with G. Crippa, T. Dolmaire and C. Saffirio.

Project 2: remove L1 assumption, dealing with weak solutions in Y Θ
ul for suitable Θ,

in collaboration with G. Ciampa and G. Crippa.

Other ideas: more general functional spaces? lake equations?
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Thank you for your attention!

G. Crippa and G. Stefani, ``An elementary proof of existence and uniqueness for the Euler
flow in localized Yudovich spaces'' (2021), submitted, available at arXiv:2110.15648.

Slides available upon request (giorgio.stefani@unibas.ch) or on giorgiostefani.weebly.com.
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