
ON THE CONVEX COMPONENTS OF A SET

GIORGIO STEFANI

Abstract. The convex components of a set (with non-empty interior) are not uniquely
determined in general. In this talk, after having recalled some elementary (quantitative)
monotonicity properties of the Euclidean perimeter, we study some lower bounds on
the minimal number of convex components of an arbitrary set, showing the sharpness
of our results with some explicit examples. This is a joint work in collaboration with
F. Giannetti.

1. Archimedes and the (quantitative) Monotonicity of Perimeter

The ambient space is Rn with n ≥ 2. For all s ≥ 0, we let Hs be the s-dimensional
Hausdorff measure (in particular, H0 is the counting measure).

Definition 1.1 (Body). A body E ⊂ Rn is a compact set with non-empty interior.

If E ⊂ Rn is a k-dimensional convex body, with 1 ≤ k ≤ n, we let ∂E be its boundary,
which is a set of Hausdorff dimension (k − 1).

Definition 1.2 (Perimeter). If E ⊂ Rn is a convex body, then P (E) = Hn−1(∂E) denotes
the perimeter of E.

Proposition 1.3 (Monotonicity). If A ⊂ B ⊂ Rn are convex bodies, then

P (A) ≤ P (B). (1.1)

Inequality (1.1) is well known since the ancient Greek (Archimedes himself took it as
a postulate in his work on the sphere and the cylinder, see [1, p. 36]) and can be proved
in many different ways, for example by exploiting either the Cauchy formula for the area
surface or the monotonicity property of mixed volumes, [2, §7], by using the Lipschitz
property of the projection on a convex closed set, [3, Lemma 2.4], or finally by observing
that the perimeter is decreased under intersection with half-spaces, [10, Exercise 15.13].

Theorem 1.4 (Quantitative monotonicity [4, 5, 9, 11]). Let n ≥ 2. If A ⊂ B are two
convex bodies in Rn, then

P (A) + ωn−1r
n−2h2

r +
√

r2 + h2
≤ P (B), (1.2)
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Figure 1. The setting of the estimate (1.2) (on the left) with an example
of equality (on the right).

where ωn = πn/2

Γ( n
2 +1) denotes the volume of the unit ball in Rn, h = h(A, B) is the Hausdorff

distance of A and B and

r = n−1

√√√√Hn−1(B ∩ ∂H)
ωn−1

, H = {x ∈ Rn : ⟨b − a, x − a⟩ ≤ 0},

with a ∈ A and b ∈ B such that |a − b| = h(A, B), see Figure 1 (left).

The quantitative estimate (1.2) is sharp, in the sense that they hold as equalities in
some cases, see Figure 1 (right).

2. Convex components

Let n ≥ 2. Let E ⊂ Rn be a body and consider a decomposition of the form

E =
k⋃

i=1
Ei, (2.1)

where k ∈ N and E1, . . . , Ek are convex bodies, the convex components of E. In general,
such a decomposition is obviously not unique, so we want to give a lower bound on the
minimal number kmin(E) ∈ N of the convex components of E.

We observe that:
• kmin(E) = 1 if and only if E is a convex body;
• kmin(E) ≥ c(E), where c(E) ∈ N is the number of connected components of E.

Therefore, without loss of generality, we can assume that E is connected.
The first lower bound on the minimal number of convex components was given in [9,

Theorem 1.1]. Here and in the following, ⌈x⌉ ∈ Z denotes the upper integer part of x ∈ R.

Theorem 2.1 (Lower bound). Let n ≥ 2. If E ⊂ Rn is a body admitting a decomposi-
tion (2.1), then

kmin(E) ≥
⌈

P (E)
P (co(E))

⌉
. (2.2)

Taking advantage of the quantitative estimate (1.2), in [6] the authors were able to
improve the lower bound (2.2) for n = 2.

Theorem 2.2 (Improved lower bound for n = 2). Let E ⊂ R2 be a body. Assume that
there exist p ∈ N and α ∈ (0, 1) such that any decomposition of the form (2.1) admits p
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convex components Ei1 , . . . , Eip with

h(Eij
, co(E)) ≥ α diam(co(E)) (2.3)

for all j = 1, . . . , p. Then

kmin(E) ≥


P (E) + 4α2p

1+
√

1+4α2 diam(co(E))
P (co(E))

. (2.4)

Inequality (2.4) is sharp, in the sense that it holds as an equality in some cases. More-
over, it improves the previous lower bound (2.2) in the case n = 2. Indeed, in [6] the
authors exhibit an example for which (2.2) gives a strict inequality while, on the contrary,
(2.4) yields an equality.

Definition 2.3 (Maximal sectional radius). Let n ≥ 2 and let E ⊂ Rn be a body. Given
a unitary direction ν ∈ Sn−1, we let

ρν(E) = sup

 n−1

√√√√Hn−1(E ∩ (tν + ∂Hν))
ωn−1

: t ∈ R


be the maximal sectional radius of E in the direction ν, where Hν = {x ∈ Rn : ⟨x, ν⟩ ≥ 0}.
Note that ρ−ν(E) = ρν(E) for all ν ∈ Sn−1.

Our main result is the following, see [7, Theorem 3.3].

Theorem 2.4 (Improved lower bound for n ≥ 2). Let n ≥ 2 and let E ⊂ Rn be a body.
Assume that there exist p ∈ N, α ∈ (0, 1) and β ∈ [0, 1] with the following properties.
For every family E1, . . . , Ek, with k ∈ N, of convex bodies such that E = ⋃k

i=1 Ei, we can
find a subfamily of p convex bodies Ei1 , . . . , Eip and a family of corresponding p closed
half-spaces such that Eij

⊂ Hij
,

h(co(E) ∩ Hij
, co(E)) ≥ α diam(co(E)) (2.5)

and
Hn−1(co(E) ∩ ∂Hij

) ≥ βωn−1ρνij
(co(E))n−1 (2.6)

for all j = 1, . . . , p, where νij
∈ Sn−1 is the inner unit normal of the half-space Hij

. Then

kmin(E) ≥



P (E) + ωn−1α
2βn−2

p∑
j=1

ρνij
(co(E))n−2 diam(co(E))2

ρνij
(co(E))+

√
ρνij

(co(E))2+α2 diam(co(E))2

P (co(E))


. (2.7)

Inequality (2.7) improves the previous lower bound (2.2) since it holds as an equality
in some cases for which (2.2) gives a strict inequality only. We will give some explicit
examples in Section 4 below.

Note that the assumption (2.5) corresponds to (2.3), while the additional assump-
tion (2.6) comes into play for n ≥ 3 only.
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In fact, if we take n = 2 in Theorem 2.4, then the inequality (2.7) becomes

kmin(E) ≥



P (E) + 2α2
p∑

j=1

diam(co(E))2

ρνij
(co(E))+

√
ρνij

(co(E))2+α2 diam(co(E))2

P (co(E))


(2.8)

(as customary, we use the convention 00 = 1) and the parameter β ∈ [0, 1] provided
by (2.6) plays no role in the final estimate (2.8). Consequently, the additional assumption
in (2.6) can be dropped and one just need to choose the closed half-plane Hij

⊂ R2 in
such a way that

h(co(E) ∩ Hij
, co(E)) = h(Eij

, co(E)) for all j = 1, . . . , p,

which is always possible by the definition of the Hausdorff distance and the convexity of
each component Eij

.
Concerning the higher dimensional case n ≥ 3, a control like the one in (2.6) seems

reasonable to be assumed. Indeed, as one may realize by looking at the inequality (2.2),
the set E ⊂ Rn may have a convex component very lengthened in one specific direction
ν ∈ Sn−1 which does not give a substantial contribution to the total perimeter of E but,
nevertheless, that strongly affects the total perimeter of the convex hull co(E).

In addition, we observe that the effectiveness of the lower bound (2.2) drastically
changes when passing from the planar case n = 2 to the non-planar case n ≥ 3. Indeed,
if E ⊂ R2 is a non-convex connected compact set admitting at least one decomposition
like (2.1), then

P (co(E)) < P (E),
correctly implying that kmin(E) ≥ 2. However, as we are going to show with some
examples in Section 4 below, there are non-convex connected compact sets E ⊂ Rn, with
n ≥ 3, such that

P (co(E)) ≥ P (E),
so that (2.2) only implies that kmin(E) ≥ 1. Nevertheless, the inequality (2.7) given by
Theorem 2.4 allows us to recover the correct value of kmin(E) in these examples.

Last but not least, let us observe that, in the planar case n = 2, one can trivially bound

ρν(co(E)) ≤ diam(co(E))
2 for all ν ∈ S1, (2.9)

so that inequality (2.8) gives back

kmin(E) ≥


P (E) + 2pα2 diam(co(E))2

diam(co(E))
2 +

√
diam(co(E))2

4 +α2 diam(co(E))2

P (co(E))


=


P (E) + 4α2p

1+
√

1+4α2 diam(co(E))
P (co(E))

,
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that is the estimate in (2.4). Actually, because of the fact that the upper bound (2.9) can
be too rough in general, the inequality (2.7) given by our Theorem 2.4 is more precise
than the one in (2.4), as we are going to show in Example 4.1 below.

3. Proof of Theorem 2.4

We recall that, if A ⊂ B are two compact sets in Rn, with n ≥ 2, then the Hausdorff
distance h(A, B) between A and B can be written as

h(A, B) = max
b∈B

dist(A, b) = max
b∈B

min
a∈A

|a − b|.

As above, given ∅ ≠ A ⊂ B two convex bodies in Rn, with n ≥ 2, we denote by

δ(B, A) := Hn−1(∂B) − Hn−1(∂A) ≥ 0

the perimeter deficit between A and B.

Proof of Theorem 2.4. Since E is compact, its convex hull co(E) is compact too, see [8,
Corollary 3.1] for example. As a consequence, P (co(E)) < +∞. Arguing as in [6], we can
estimate

Hn−1(∂E) ≤ Hn−1
(

k⋃
i=1

∂Ei

)
≤

k∑
i=1

Hn−1(∂Ei)

≤
p∑

j=1
Hn−1(∂Eij

) +
k∑

j=p+1
Hn−1(∂Eij

)

≤
p∑

j=1

(
Hn−1(∂(co(E))) − δ(co(E), Eij

)
)

+
k∑

j=p+1
Hn−1(∂(co(E)))

≤ kHn−1(∂(co(E))) −
p∑

j=1
δ(co(E), Eij

),

so that 
Hn−1(∂E) +

p∑
j=1

δ(co(E), Eij
)

Hn−1(∂(co(E)))


≤ k.

Now, since Eij
⊂ Hij

, we observe that

δ(co(E), Eij
) = Hn−1(∂(co(E))) − Hn−1(∂Eij

)

=
(
Hn−1(∂(co(E))) − Hn−1(∂(co(E) ∩ Hij

))
)

+
(
Hn−1(∂(co(E) ∩ Hij

)) − Hn−1(∂Eij
)
)

= δ(co(E) ∩ Hij
, Eij

) + δ(co(E), co(E) ∩ Hij
)

≥ δ(co(E), co(E) ∩ Hij
)
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for all j = 1, . . . , p. We can thus apply (1.2) to each couple of convex bodies co(E) and
co(E) ∩ Hij

, with j = 1, . . . , p, and get

δ(co(E), co(E) ∩ Hij
) ≥

ωn−1r
n−2
ij

h2
ij

rij
+
√

r2
ij

+ h2
ij

, (3.1)

where

hij
= h(co(E) ∩ Hij

, co(E)), rij
= n−1

√√√√Hn−1(co(E) ∩ ∂Hij
)

ωn−1
.

By (2.6), we clearly have
βρνij

(co(E)) ≤ rij
≤ ρνij

(co(E)) (3.2)

for all j = 1, . . . , p. Inserting (3.2) into (3.1), we immediately obtain that

δ(co(E) ∩ Hij
, co(E)) ≥

ωn−1β
n−2ρνij

(co(E))n−2h2
ij

ρνij
(co(E)) +

√
ρνij

(co(E))2 + h2
ij

for all j = 1, . . . , p. Now, for any given c > 0, the function

s 7→ s2

c +
√

c + s2

is strictly increasing for s > 0. Since hij
≥ α diam(co(E)) for all j = 1, . . . , p by (2.5), we

can finally estimate

δ(co(E), Eij
) ≥

ωn−1α
2βn−2ρνij

(co(E))n−2 diam(co(E))2

ρνij
(co(E)) +

√
ρνij

(co(E))2 + α2 diam(co(E))2

for all j = 1, . . . , p. In conclusion, we get

k ≥


Hn−1(∂E) +

p∑
j=1

δ(Eij
, co(E))

Hn−1(∂(co(E)))



≥



Hn−1(∂E) + ωn−1α
2βn−2

p∑
j=1

ρνij
(co(E))n−2 diam(co(E))2

ρνij
(co(E))+

√
ρνij

(co(E))2+α2 diam(co(E))2

Hn−1(∂(co(E)))


proving (2.7). The proof is thus complete. □

4. Examples

4.1. An example in R2. We begin with the following example in R2 showing that our
Theorem 2.4 in the planar formulation (2.8), at least in some cases, provides a strictly
better estimate than the one in (2.4) previously established in [6]. This example is based
on the set C ⊂ R2 shown in Figure 2, which was already considered in [9, Example 2.1] and
in [6, Example 3.1]. The set C depends on two parameters l > h > 0. In [6, Example 3.1],
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to make the construction work, it was necessary to assume that h ∈ (0, ε) for some
ε ∈ (0, l) sufficiently small. In our situation, thanks to the refined inequality (2.8), our
choice of the parameter h is less restrictive, i.e., we are going to choose h ∈ (0, ε̄) for some
ε̄ ∈ (ε, l). As matter of fact, when h ∈ (ε, ε̄), our inequality (2.8) gives the correct value
kmin(C) = 3, while inequality (2.4) gives the lower bound kmin(C) ≥ 2 only.

. P3h

h

h

h

l ∂Hj
νj

Figure 2. The set C ⊂ R2 (on the left) and its convex hull (on the right).

Example 4.1 (The set C ⊂ R2). Let l > h > 0 and consider the set C ⊂ R2 in Figure 2.
We can compute

H1(∂C) = 4l + 4h, H1(∂(co(C))) = 2l + 6h, diam(co(C)) =
√

l2 + 9h2.

Since C is not convex, we must have that kmin(C) ≥ 2. After all, it is evident that
kmin(C) = 3. Our argument will give such right value for a larger class of parameters
l > h > 0 than the one provided in [6, Example 3.1]. First of all, notice that we do not
deduce any further information from the result in [9]. Indeed, inequality (2.2) only yields

kmin(C) ≥
⌈

H1(∂C)
H1(∂(co(C)))

⌉
= 2,

since an elementary computation shows that
H1(∂C)

H1(∂(co(C))) = 2l + 2h

l + 3h
∈ (1, 2)

whenever l > h > 0. Now we consider the point P ∈ ∂C as shown in Figure 2. For every
decomposition of C into convex bodies, there exists a convex body Ej containing P .
Since Ej is convex and contained in C, we must have that Ej ⊂ Hj, where Hj is the half-
space such that ∂Hj contains the face of C to which the point P belongs, see Figure 2.
Consequently, we must have

h(co(C) ∩ Hj, co(C)) = l − h, H1(co(C) ∩ ∂Hj) = 3h, ρνj
(co(C)) = 3h

2 ,

where νj ∈ S1 is the inner unit normal of the half-space Hj as in Figure 2. Now let l > 0
be fixed. In [6], it has been shown that, for any α ∈ (0, 1), p = 1 and h ≪ l, one has

H1(∂C) + 4α2

1+
√

1+4α2 diam(co(C))
H1(∂(co(C)))

 = 3.

We now apply inequality (2.4) and Theorem 2.4 with

p = 1, α = l − h√
l2 + 9h2

, β = 0.
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We claim that we can choose h ∈ (0, l) such that
H1(∂C) + 4α2

1+
√

1+4α2 diam(co(C))
H1(∂(co(C)))

 = 2

and 
H1(∂C) + 2α2 diam(co(C))2

ρνj (co(C))+
√

ρνj (co(C))2+α2 diam(co(C))2

H1(∂(co(C)))

 = 3.

In order to have both the claimed inequalities, it is sufficient to find h ∈ (0, l) such that

H1(∂C) + 4α2

1+
√

1+4α2 diam(co(C))
H1(∂(co(C))) ≤ 2 <

H1(∂C) + 2α2 diam(co(C))2

ρνj (co(C))+
√

ρνj (co(C))2+α2 diam(co(C))2

H1(∂(co(C))) ,

that is,

2(l + h) + 2α2

1+
√

1+4α2

√
l2 + 9h2

l + 3h
≤ 2 <

2(l + h) + 2α2(l2+9h2)
3h+

√
9h2+4α2(l2+9h2)

l + 3h
.

Up to some elementary algebraic computations, we need to find h ∈ (0, l) such that
(l − h)2

3h +
√

9h2 + 4(l − h)2
> 2h ≥ (l − h)2

√
l2 + 9h2 +

√
l2 + 9h2 + 4(l − h)2

.

If we let h = tl for t ∈ (0, 1), then we just need to solve
1 − 5t2 − 2t − 2t

√
9t2 + 4(1 − t)2 > 0

2t
√

1 + 9t2 + 2t
√

1 + 9t2 + 4(1 − t)2 − 1 − t2 + 2t ≥ 0
and we let the reader check that the above system of inequalities admits solutions.
4.2. Two examples in R3. We now give two examples in R3 showing that for n = 3 our
Theorem 2.4 provides an improvement of the inequality (2.2) established in [9].

2h

h
h

h

h

l

.
P

νj
∂Hj

Figure 3. The set L ⊂ R3 (on the left) and its convex hull (on the right).

Example 4.2 (The body L ⊂ R3). Let l > h > 0 and consider the set L ⊂ R3 in Figure 3.
We can compute

H2(∂L) = 4hl + 6h2,

H2(∂(co(L))) = 4hl + 5h2 + h
√

(l − h)2 + h2,

diam(co(L)) =
√

l2 + 5h2.
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Since L is not convex, we must have that kmin(L) ≥ 2, and a simple geometric argument
allows to conclude that kmin(L) = 2. From (2.2) we deduce that

kmin(L) = 2 > 1 =
⌈

H2(∂L)
H2(∂(co(L)))

⌉
,

since an elementary computation shows that

H2(∂L)
H2(∂(co(L))) = 4l + 6h

4l + 5h +
√

(l − h)2 + h2
∈ (0, 1)

whenever l > h > 0. Now we consider the point P ∈ ∂L as shown in Figure 3. For
every decomposition of L into convex bodies, there exists a convex body Ej containing P .
Since Ej is convex and contained in L, we must have that Ej ⊂ Hj, where Hj is the half-
space such that ∂Hj contains the face of L to which the point P belongs, see Figure 3.
Consequently, we must have

h(co(L) ∩ Hj, co(L)) = l − h, H2(co(L) ∩ ∂Hj) = 2h2, ρνj
(co(L)) =

√
2h2

π
,

where νj ∈ S2 is the inner unit normal of the half-space Hj as in Figure 3. We now let
l > 0 be fixed. We apply Theorem 2.4 with

p = 1, α = l − h√
l2 + 5h2

, β = 1.

Provided that we choose h ∈ (0, l) sufficiently small, we conclude that

kmin(L) ≥



4hl + 6h2 + π
(

l−h√
l2+5h2

)2

√
2h2

π

(√
l2 + 5h2

)2

√
2h2

π
+

√
2h2

π
+
(

l−h√
l2+5h2

)2 (√
l2 + 5h2

)2

4hl + 5h2 + h
√

(l − h)2 + h2


=


4l + 6h +

√
2π (l−h)2√

2h2

π
+
√

2h2

π
+(l−h)2

4l + 5h +
√

(l − h)2 + h2


= 2,

since

lim
h→0+

4l + 6h +
√

2π (l−h)2√
2h2

π
+
√

2h2

π
+(l−h)2

4l + 5h +
√

(l − h)2 + h2
= 4 +

√
2π

5 ∈ (1, 2).
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3h

4h

h

l

2h

h h
.
P

∂Hj

νj

Figure 4. The set D ⊂ R3 (on the left) and its convex hull (on the right).

Example 4.3 (The set D in R3). Let l > 2h > 0 and consider the set D ⊂ R3 in Figure 4.
We can compute

H2(∂D) = 12lh + 4h
√

(l − h)2 + h2 + 4h
√

(l − 2h)2 + h2 + 23h2,

H(∂(co(D))) = 9lh + 4h
√

(l − h)2 + h2 + 25h2,

diam(co(D)) =
√

l2 + 25h2.

Since D is not convex, we must have that kmin(D) ≥ 2, and a simple geometric argument
allows to conclude that kmin(D) ≥ 3. From (2.2) we deduce that

kmin(D) = 3 > 2 =
⌈

H2(∂D)
H2(∂(co(D)))

⌉
,

since an elementary computation shows that

H2(∂D)
H2(∂(co(D))) =

12l + 4
√

(l − h)2 + h2 + 4
√

(l − 2h)2 + h2 + 23h

9l + 4
√

(l − h)2 + h2 + 25h
∈ (1, 2)

whenever l > 2h > 0. Now we consider the point P ∈ ∂D as shown in Figure 4. For
every decomposition of D into convex bodies, there exists a convex body Ej containing P .
Since Ej is convex and contained in D, we must have that Ej ⊂ Hj, where Hj is the half-
space such that ∂Hj contains the face of D to which the point P belongs, see Figure 4.
Consequently, we must have

h(co(D) ∩ Hj, co(D)) = l − h, H2(co(D) ∩ ∂Hj) = 12h2, ρνj
(co(D)) =

√
12h2

π
,

where νj ∈ S2 is the inner unit normal of the half-space Hj as in Figure 4. We now let
l > 0 be fixed. We apply Theorem 2.4 with

p = 1, α = l − h√
l2 + 25h2

, β = 1.
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Provided that we choose h ∈
(
0, l

2

)
sufficiently small, we conclude that

kmin(D) ≥



H2(∂D) + π
(

l−h√
l2+25h2

)2
√

12h2
π (√

l2+25h2)2√
12h2

π
+

√
12h2

π
+
(

l−h√
l2+25h2

)2
(√

l2+25h2)2

H2(∂(co(D)))


=


12l + 4

√
(l − h)2 + h2 + 4

√
(l − 2h)2 + h2 + 23h +

√
12π (l−h)2√

12h2
π

+
√

12h2
π

+(l−h)2

9l + 4
√

(l − h)2 + h2 + 25h


= 3,

since

lim
h→0+

12l + 4
√

(l − h)2 + h2 + 4
√

(l − 2h)2 + h2 + 23h +
√

12π (l−h)2√
12h2

π
+
√

12h2
π

+(l−h)2

9l + 4
√

(l − h)2 + h2 + 25h

= 20 +
√

12π

13 ∈ (2, 3).

4.3. An example in Rn. We conclude this section with Example 4.5 below showing that
for all n ≥ 3 our Theorem 2.4 provides an improvement of the inequality (2.2) established
in [9]. In Example 4.5 we will need to apply the following result, whose elementary proof
is detailed below for the reader’s convenience.

Lemma 4.4. Let ℓ ∈ (0, +∞) and let Q ⊂ R2 be a set with

H1(∂Q) < +∞ and H2(Q) < +∞.

If En = Q × [0, ℓ]n−2 ⊂ Rn, then

Hn−1(∂En) = ℓn−2 H1(∂Q) + 2(n − 2) ℓn−3 H2(Q) (4.1)

for all n ≥ 2.

Proof. By definition, the set En ⊂ Rn satisfies

Hn(En) = ℓn−2 H2(Q). (4.2)

Moreover, since we can recursively write En = En−1 × [0, ℓ] and thus

∂En = ((∂En−1) × [0, ℓ]) ∪ (En−1 × {0, ℓ}),

by the coarea formula we can compute

Hn−1(∂En) = 2Hn−1(En−1) + ℓ Hn−2(∂En−1)

for all n ≥ 2. The validity of (4.1) can thus be checked by induction, thanks to (4.2). □
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. P ′
λh

h

h

l ∂H ′
j

ν′
j

Figure 5. The body L2 ⊂ R2 (on the left) and its convex hull (on the
right).

Example 4.5 (The set Ln ⊂ Rn for n ≥ 3). Let l > h > 0 and λ > 1 and consider the
set Ln = L2 × [0, h]n−2 ⊂ Rn for n ≥ 3, where L2 ⊂ Rn is the set in Figure 5. Note that

H1(∂L2) = 2l + 2λh, H2(L2) = h
(
l + (λ − 1)h

)
and, similarly,

H1(∂(co(L2))) = l +
√

(l − h)2 + (λ − 1)2h2 + (λ + 2)h,

H2(co(L2)) = h

2
(
(λ + 1)l + (λ − 1)h

)
.

Since co(Ln) = co(L2) × [0, h]n−2, we can apply Lemma 4.4 to compute

Hn−1(∂Ln) = 2hn−2
(
(n − 1)l + ((n − 1)λ − n + 2))h

)
,

Hn−1(∂(co(Ln))) = hn−2
(
((n − 2)λ + n − 1)l +

√
(l − h)2 + (λ − 1)2h2

+ ((n − 1)λ − n + 4)h
)
,

diam(co(Ln)) =
√

l2 + (λ2 + n − 2)h2

for all n ≥ 3. Note that Ln is not convex, so we must have that kmin(Ln) ≥ 2 for all n ≥ 3.
In fact, a simple geometric decomposition proves that kmin(Ln) = 2 for all n ≥ 3. Now
we consider the point P = (P ′, 0) ∈ Ln, where P ′ ∈ ∂L2 is shown in Figure 5. For every
decomposition of Ln into convex bodies, there exists a convex body Ej containing P .
Since Ej is convex and contained in Ln, we must have that its projection E ′

j = PR2(Ej) is
a convex body contained in in L2 ∩ H ′

j, where PR2 : Rn → R2 is the canonical projection
onto the first two coordinates and H ′

j is the half-plane such that ∂H ′
j contains the face of

L2 to which the point P belongs, see Figure 5. Therefore, we must have that Ej ⊂ Hj,
where Hj is the half-space Hj = P−1

R2 (H ′
j) ⊂ Rn. Consequently, we must have

h(co(Ln)∩Hj, co(Ln)) = l−h, Hn−1(co(Ln)∩∂Hj) = λhn−1, ρνj
(co(Ln)) = n−1

√
λhn−1

ωn−1
,

where νj ∈ Sn−1 is the inner unit normal of the half-space Hj (precisely, νj = (ν ′
j, 0),

where ν ′
j is the inner unit normal of H ′

j, see Figure 5). Now we let l > 0 be fixed. We
apply Theorem 2.4 with

p = 1, α = l − h√
l2 + (λ2 + n − 2)h2

, β = 1.
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We are going to choose λ > 1 as a dimensional constant and h ∈ (0, l) sufficiently small.
Indeed, for any given λ > 1, we have that

lim
h→0+

Hn−1(∂Ln)
Hn−1(∂(co(Ln))) = 2n − 2

(n − 2)λ + n

and, similarly,

lim
h→0+

Hn−1(∂Ln) + ωn−1α
2βn−2 ρνij

(co(Ln))n−2 diam(co(Ln))2

ρνj (co(Ln))+
√

ρνj (co(E))2+α2 diam(co(Ln))2

Hn−1(∂(co(Ln))) = 2n − 2 + cnλ
n−2
n−1

(n − 2)λ + n
,

where cn = ω
1

n−1
n−1 > 0 is a dimensional constant. Since λ > 1, we have that

2n − 2
(n − 2)λ + n

< 1 for all n ≥ 3.

On the other hand, we obviously have

2n − 2 + cnλ
n−2
n−1

(n − 2)λ + n
> 1 ⇐⇒ λ

n−2
n−1 >

n − 2
cn

(λ − 1)

and it is possible to verify that the last inequality admits solutions in the interval (1, +∞).
Consequently, for each n ≥ 3 we can find λn ∈ (1, +∞) such that

2n − 2 + cnλ
n−2
n−1
n

(n − 2)λn + n
> 1.

Therefore, provided that we choose λ = λn as above and h ∈ (0, l) sufficiently small, we
conclude that the set Ln ⊂ Rn corresponding to these choices of parameters satisfies⌈

Hn−1(∂Ln)
Hn−1(∂(co(Ln)))

⌉
= 1

and 
Hn−1(∂Ln) + ωn−1α

2βn−2 ρνij
(co(Ln))n−2 diam(co(Ln))2

ρνj (co(Ln))+
√

ρνj (co(E))2+α2 diam(co(Ln))2

Hn−1(∂(co(Ln)))

 = 2.
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