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Fractional derivatives: three famous examples

Around 1675 Newton and Leibniz discovered Calculus. Somewhat surprisingly, the
first appearance of the concept of a fractional derivative is found in a letter written
to De l’Hôpital by Leibniz in 1695!

Let us recall the three most famous fractional derivatives:

Leibniz-Lacroix (1819):
dαxm

dxα
=

Γ(m+ 1)

Γ(m− α+ 1)
xm−α

Riemann-Liouville (1832-1847): RLDα
a f(t) =

1

Γ(1− α)

d

dt

∫ t

a

f(τ)

(t− τ)α
dτ

Caputo (1967): CDα
a f(t) =

1

Γ(1− α)

∫ t

a

f ′(τ)

(t− τ)α
dτ.

Some observations:
• they are defined just for functions of one variable;
• only Caputo’s derivative kills constants;
• Caputo’s derivative requires f to be differentiable!

Question: What about fractional gradient? Can we just take
(
Dα,1, . . . , Dα,n

)
?

Be careful: the “coordinate approach” gives an operator not invariant by rotations!
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Silhavy’s approach: invariance properties

Recently, Silhavy proposed that a “good” fractional operator should satisfy:

• invariance with respect to translations and rotations;
• α-homogeneity for some α ∈ (0, 1);
• mild continuity on suitable test space, e.g. C∞

c or Schwartz’s space S .

Idea behind: fractional operators should have a physical meaning!

For f ∈ C∞
c (Rn) and φ ∈ C∞

c (Rn;Rn), we consider

∇αf(x) := µn,α

∫
Rn

(f(y)− f(x))(y − x)

|y − x|n+α+1
dy, x ∈ Rn,

and

divαφ(x) := µn,α

∫
Rn

(φ(y)− φ(x)) · (y − x)

|y − x|n+α+1
dy, x ∈ Rn.

Theorem (Silhavy, 2020)

∇α and divα are determined (up to mult. const.) by the three requirements above.
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A little bit of literature on ∇α

The operator fractional Riesz gradient ∇α ≡ ∇I1−α has a long story:

• 1959, Horvath (earliest reference up to knowledge);
• 1961, implicitly mentioned in one paper by Nikol’ski-Sobolev;
• 1971, non-local continuum mechanics by Edelen-Green-Laws;
• 2011-13, non-local porous medium equation by Caffarelli-Soria-Vazquez;
• 2015, non-local porous medium equation by Biler-Imbert-Karch;
• after 2015, fractional PDE theory and “geometric” inequalities by Shieh-Spector,

Ponce-Spector, Schikorra-Spector-Van Schaftingen;
• 2020, distributional approach by Silhavy (introducing divα ≡ divI1−α).

4/25



Duality, fractional Laplacian and Riesz transform

The operators ∇α and divα are dual, in the sense that∫
Rn

f divαφdx = −
∫
Rn

φ · ∇αf dx

for all f ∈ C∞
c (Rn) and φ ∈ C∞

c (Rn;Rn).

The operators ∇α and divβ satisfy − divβ∇α = (−∆)
α+β

2 .

If we let

Iαu(x) :=
Γ
(
n−α
2

)
2απ

n
2 Γ

(
α
2

) ∫
Rn

u(y)

|x− y|n−α
dy

be the fractional Riesz potential of u ∈ C∞
c (Rn;Rm), then

∇αf = I1−α∇f, divαφ = I1−α divφ.

Integrability: ∇αf ∈ L1(Rn) ∩ L∞(Rn) and divαφ ∈ L1(Rn;Rn) ∩ L∞(Rn;Rn).

Relax: ∇α and divα are well posed also for Lipc-regular test functions.
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Leibniz’s rules for ∇α and divα

For any f, g ∈ C∞
c (Rn), we have it holds

∇α(fg) = f∇αg + g∇αf +∇α
NL(f, g),

where

∇α
NL(f, g)(x) := µn,α

∫
Rn

(f(y)− f(x))(g(y)− g(x))(y − x)

|y − x|n+α+1
dy, x ∈ Rn.

For any f ∈ C∞
c (Rn) and φ ∈ C∞

c (Rn;Rn), we also have it holds

divα(fφ) = f divαφ+ φ · ∇αf + divαNL(f, φ),

where

divαNL(f, φ)(x) := µn,α

∫
Rn

(f(y)− f(x))(φ(y)− φ(x)) · (y − x)

|y − x|n+α+1
dy, x ∈ Rn.

Although ∇α and divα have a strong non-local behaviour, they commute with
convolutions (by linearity). In addition, Leibniz’s rules allow for approximation by
cut-off functions (careful control on non-local terms).
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A fractional version of the Fundamental Theorem of Calculus

Let α ∈ (0, 1). If f ∈ C∞
c (Rn), then

f(y)− f(x) = µn,−α

∫
Rn

(
z − x

|z − x|n+1−α
− z − y

|z − y|n+1−α

)
· ∇αf(z) dz

for any x, y ∈ Rn.

Some good news:
• we get L1-control on translations;
• we get L1-control on smoothed-by-convolution functions;
• we get compactness for sequences with uniformly bounded RHS.

Some bad news:
• left-hand integral is on the whole space (non-locality!);
• we cannot get local Poincaré inequality;
• we cannot get relative fractional isoperimetric inequality.
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Fractional variation and the space BV α(Rn)

We define
BV α(Rn) =

{
f ∈ L1(Rn) : |Dαf |(Rn) < +∞

}
,

where

|Dαf |(Rn) = sup
{∫

Rn

f divαφdx : φ ∈ C∞
c (Rn;Rn), ∥φ∥L∞(Rn;Rn) ≤ 1

}
.

In perfect analogy with the classical BV framework:

• BV α(Rn) is a Banach space and its norm is l.s.c. w.r.t. L1-convergence;
• C∞(Rn) ∩BV α(Rn) and C∞

c (Rn) are dense subspaces of BV α(Rn);
• given f ∈ L1(Rn), f ∈ BV α(Rn) ⇐⇒ ∃Dαf ∈ M (Rn;Rn) such that∫

Rn

f divαφdx = −
∫
Rn

φ · dDαf

for any φ ∈ Lipc(R
n;Rn);

• unif. bounded seq. in BV α(Rn) admit limit points in L1(Rn) w.r.t. L1
loc-conv.;

• for n ≥ 2 we have BV α(Rn) ⊂ L
n

n−α (Rn) (Gagliardo-Nirenberg-Sobolev).
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Fractional distributional Sobolev spaces and Bessel potential spaces

For p ∈ [1,+∞], we define the distributional fractional Sobolev space

Sα,p(Rn) := {f ∈ Lp(Rn) : ∃∇αf ∈ Lp(Rn;Rn)}.

Here ∇αf ∈ L1
loc(R

n;Rn) is the weak fractional gradient of f ∈ Lp(Rn):∫
Rn

f divαφdx = −
∫
Rn

φ · ∇αf dx for all φ ∈ C∞
c (Rn;Rn).

We naturally have Sα,1(Rn) ⊂ BV α(Rn) with
f ∈ Sα,1(Rn) ⇐⇒ |Dαf | ≪ L n, Dαf = ∇αf L n.

We are also able to prove that BV α(Rn) \ Sα,1(Rn) ̸= ∅.

Theorem (Bruè-Calzi-Comi-S., 2020)

If p ∈ (1,+∞), then Sα,p(Rn) = Lα,p(Rn), where

Lα,p(Rn) = {f ∈ S ′(Rn) : (I −∆)
α
2 f ∈ Lp(Rn)}

is the Bessel potential space.
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Fractional Sobolev spaces and fractional operators

For p ∈ [1,+∞) and α ∈ (0, 1), we let

Wα,p(Rn) =

{
f ∈ Lp(Rn) : [f ]pWα,p(Rn) =

∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+pα
dx dy < +∞

}
.

The fractional perimeter in an open set Ω ⊂ Rn of a measurable set E ⊂ Rn is

Pα(E; Ω) =

∫
Ω

∫
Ω

|χE(x)− χE(y)|
|x− y|n+α

dx dy + 2

∫
Ω

∫
Rn\Ω

|χE(x)− χE(y)|
|x− y|n+α

dx dy.

If Ω = Rn, then Pα(E;Rn) = Pα(E) = [χE ]Wα,1(Rn).

Notice that we have the extension ∇α : Wα,1(Rn) → L1(Rn;Rn), since
∥∇αf∥L1(Rn;Rn) ≤ µn,α[f ]Wα,1(Rn) for all f ∈ Wα,1(Rn).

We thus have Wα,1(Rn) ⊂ Sα,1(Rn) with f ∈ Wα,1(Rn) ⇒ Dαf = ∇αfL n.

Since Wα,1(Rn) is closed w.r.t. pointwise convergence, Sα,1(Rn) \Wα,1(Rn) ̸= ∅.

Remarkably, if 0 < β < α < 1 then BV α(Rn) ⊂ W β,1(Rn).
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Sets of finite fractional Caccioppoli α-perimeter

In perfect analogy with the standard BV setting, we give the following definition.

Let α ∈ (0, 1) and E ⊂ Rn be a measurable set. For any open set Ω ⊂ Rn, we let

|DαχE |(Ω) = sup
{∫

E

divαφdx : φ ∈ C∞
c (Ω;Rn), ∥φ∥L∞(Ω;Rn) ≤ 1

}
be the fractional Caccioppoli α-perimeter of E in Ω. If |DαχE |(Ω) < +∞, then E
has finite fractional Caccioppoli α-perimeter in Ω.

Note that E ⊂ Rn has finite fractional Caccioppoli α-perimeter in Ω if and only if
DαχE ∈ M(Ω;Rn) and ∫

E

divαφdx = −
∫
Ω

φ · dDαχE

for all φ ∈ C∞
c (Ω;Rn).

Question: can we define a fractional version of De Giorgi’s reduce boundary?
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Fractional reduced boundary

It is now natural to give the following definition.

Let E ⊂ Rn be a set with finite fractional Caccioppoli α-perimeter in Ω. A point
x ∈ Ω belongs to the fractional reduced boundary of E (inside Ω) if

x ∈ supp(DαχE) and ∃ lim
r→0

DαχE(Br(x))

|DαχE |(Br(x))
∈ Sn−1.

We thus let FαE be the fractional reduced boundary of E and define

ναE : Ω ∩ FαE → Sn−1, ναE(x) := lim
r→0

DαχE(Br(x))

|DαχE |(Br(x))
, x ∈ Ω ∩ FαE,

the inner unit fractional normal to E (inside Ω).

We thus have the following Gauss-Green formula∫
E

divαφdx = −
∫
Ω∩FαE

φ · ναE d|DαχE |.

for all φ ∈ Lipc(Ω;R
n).
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Sets of finite fractional perimeter

If E ⊂ Rn satisfies Pα(E; Ω) < +∞, then

|DαχE |(Ω) ≤ µn,αPα(E; Ω)

and
DαχE = ναE |DαχE | = ∇αχE L n.

Moreover, if χE ∈ BV (Rn), then

∇αχE(x) =
µn,α

n+ α− 1

∫
Rn

νE(y)

|y − x|n+α−1
d|DχE |(y)

for L n-a.e. x ∈ Rn.

Be careful! We have

Pα(E; Ω) < +∞ ⇒ L n(Ω ∩ FαE) > 0

even including the case χE ∈ BV (Rn). In other words, the non-local operator ∇α

produces a diffuse fractional boundary in the Wα,1 regime (since Wα,1 ⊂ Sα,1).

Example: E = (a, b) ⊂ R ⇒ FαE = R \
{

a+b
2

}
!
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Two examples: balls and halfspaces

Example 1. For L n-a.e. x ∈ Rn, we have

∇αχB1
(x) = − µn,α

n+ α− 1
gn,α(|x|)

x

|x|
,

where

gn,α(t) :=

∫
∂B1

y1
|te1 − y|n+α−1

dH n−1(y) > 0, for any t ≥ 0,

which means ναB1
(x) = −x/|x| for any x ̸= 0 and FαB1 = Rn \ {0}.

Example 2. For the halfspace H+
ν = {y · ν ≥ 0}, if x · ν ̸= 0 then

∇αχH+
ν
(x) =

2α−1Γ
(
α
2

)
√
π Γ

(
1−α
2

) 1

|x · ν|α
ν.

In particular, FαH+
ν = Rn and να

H+
ν
≡ ν .
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Density estimates

Thanks to the invariance properties, we get

DαχE−x
r

= 1
rn−α (Ix,r)#D

αχE ,

where Ix,r(y) = (y − x)/r for x, y ∈ Rn and r > 0.

Theorem (Comi-S., 2019)

If E ⊂ Rn has locally finite fractional Caccioppoli α-perimeter in Rn, then for any
x ∈ FαE there exists rx > 0 such that

|DαχE |(Br(x)) ≤ An,αr
n−α, |DαχE∩Br(x)|(R

n) ≤ Bn,αr
n−α

for all r ∈ (0, rx).

By a standard covering argument, we thus get that

|DαχE | ≤ Cn,α H n−α FαE

and therefore

dimH (FαE) ≥ n− α.
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Existence of blow-ups and coarea inequality

Let Tan(E, x) be the set of all tangent sets of E at x, i.e. the set of all limit points
in L1

loc(R
n)-topology of the family

{
E−x
r : r > 0

}
as r → 0+.

Theorem (Comi-S., 2019)

• If E has locally finite fractional Caccioppoli α-perimeter in Rn, then
Tan(E, x) ̸= ∅ for all x ∈ FαE .

• Moreover, if F ∈ Tan(E, x), then F has locally finite fractional Caccioppoli
α-perimeter in Rn and ναF (y) = ναE(x) for |DαχF |-a.e. y ∈ FαF .

What is missing: density estimates from below and we need coarea fromula.

Theorem (Comi-S., 2019)

If f ∈ BV α(Rn) is such that
∫
R |Dαχ{f>t}|(Rn) dt < +∞, then

Dαf =

∫
R
Dαχ{f>t} dt, |Dαf | ≤

∫
R
|Dαχ{f>t}| dt.

Bad news: there exist f ∈ BV α(Rn) such that
∫
R |Dαχ{f>t}|(Rn) dt = +∞!
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Asymptotics as α → 1−

Theorem (Bourgain-Brezis-Mironescu & Dávila, 2002)

Let p ∈ [1,+∞). If f ∈ W 1,p(Rn), then

lim
α→1−

(1− α)[f ]pWα,p(Rn) = cn,p∥∇f∥pLp(Rn;Rn).

If f ∈ BV (Rn), then
lim

α→1−
(1− α)[f ]Wα,1(Rn) = cn,1|Df |(Rn).

Now it is important to observe that

µn,α = 2απ−n
2
Γ(n+α+1

2 )
Γ( 1−α

2 )
∼ 1− α

ωn
as α → 1−.

Theorem (Comi-S., 2019)

Let p ∈ [1,+∞). If f ∈ W 1,p(Rn), then

lim
α→1−

∥∇αf −∇f∥Lp(Rn;Rn) = 0.

If f ∈ BV (Rn), then Dαf ⇀ Df and |Dαf | ⇀ |Df | as α → 1− and moreover

lim
α→1−

|Dαf |(Rn) = |Df |(Rn).
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Γ-convergence as α → 1−

Theorem (Ambrosio-De Philippis-Martinazzi, 2011)

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Then

Γ(L1
loc) - lim

α→1−
(1− α)Pα(E; Ω) = 2ωn−1P (E; Ω)

for every measurable set E ⊂ Rn.

Theorem (Comi-S., 2019)

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Then

Γ(L1
loc) - lim

α→1−
|DαχE |(Ω) = P (E; Ω)

for every measurable set E ⊂ Rn.

Theorem (Comi-S., 2019)

Let Ω ⊂ Rn be an open set such that Ω is bounded with Lipschitz boundary or
Ω = Rn. Then

Γ(L1) - lim
α→1−

|Dαf |(Ω) = |Df |(Ω)
for every f ∈ BV (Rn).
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The space BV 0(Rn) and the Hardy space

Imitating what we did before, we define

BV 0(Rn) =
{
f ∈ L1(Rn) : |D0f |(Rn) < +∞

}
,

where

|D0f |(Rn) = sup
{∫

Rn

f div0φdx : φ ∈ C∞
c (Rn;Rn), ∥φ∥L∞(Rn;Rn) ≤ 1

}
.

Here div0 is the dual operator of ∇0 = I1∇ = R, the Riesz transform

Rf(x) = µn,0

∫
Rn

(f(y)− f(x))(y − x)

|y − x|n+1
dy, x ∈ Rn,

(in the principal value sense).

Theorem (Bruè-Calzi-Comi-S., 2020)

We have BV 0(Rn) = H1(Rn), where

H1(Rn) = {f ∈ L1(Rn) : Rf ∈ L1(Rn;Rn)}

is the (real) Hardy space, with D0f = Rf L n as measures for f ∈ BV 0(Rn).
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Asymptotics as α → 0+

Theorem (Maz’ya-Shaposhnikova, 2002)

Let p ∈ [1,+∞). If f ∈
⋃

α∈(0,1) W
α,p(Rn), then

lim
α→0+

α [f ]pWα,p(Rn) = cn,p∥f∥pLp(Rn).

Now it is important to observe that µn,α → µn,0 as α → 0+ (no rescaling!).

Theorem (Bruè-Calzi-Comi-S., 2020)

Let p ∈ (1,+∞). If f ∈
⋃

α∈(0,1) W
α,p(Rn), then

lim
α→0+

∥∇αf −Rf∥Lp(Rn;Rn) = 0.

If f ∈ H1(Rn) ∩
⋃

α∈(0,1) W
α,1(Rn), then (actually, in H1 norm)

lim
α→0+

∥∇αf −Rf∥L1(Rn;Rn) = 0.

If f ∈
⋃

α∈(0,1) W
α,1(Rn), then

lim
α→0+

α

∫
Rn

|∇αf(x)| dx = nωnµn,0

∣∣∣∣∫
Rn

f(x) dx

∣∣∣∣.
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Fractional interpolation inequalities

We prove ∇α → R strongly as α → 0+ via fractional interpolation inequalities.

Theorem (Bruè-Calzi-Comi-S., 2020)

Let α ∈ (0, 1]. There exists cn,α > 0 such that

|Dβf |(Rn) ≤ cn,α∥f∥
α−β
α

H1(Rn) |D
αf |(Rn)

β
α

for all β ∈ [0, α] and all f ∈ H1(Rn) ∩BV α(Rn).

Theorem (Bruè-Calzi-Comi-S., 2020)

Let p ∈ (1,+∞). There exists cn,p > 0 such that

∥∇βf∥Lp(Rn;Rn) ≤ cn,p∥∇γf∥
α−β
α−γ

Lp(Rn;Rn) ∥∇
αf∥

β−γ
α−γ

Lp(Rn;Rn)

for all 0 ≤ γ ≤ β ≤ α ≤ 1 and all f ∈ Sα,p(Rn). There exists cn > 0 such that

∥∇βf∥H1(Rn;Rn) ≤ cn∥∇γf∥
α−β
α−γ

H1(Rn;Rn) ∥∇
αf∥

β−γ
α−γ

H1(Rn;Rn)

for all 0 ≤ γ ≤ β ≤ α ≤ 1 and all f ∈ HSα,1(Rn) (i.e., f ∈ H1 and ∇αf ∈ H1).
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BV α,p(Rn) and the properties of the fractional variation

Given p ∈ [1,+∞], we define

BV α,p(Rn) = {f ∈ Lp(Rn) : |Dαf |(Rn) < +∞},

where, as before,

|Dαf |(Rn) = sup
{∫

Rn

f divαφdx : φ ∈ C∞
c (Rn;Rn), ∥φ∥L∞(Rn;Rn) ≤ 1

}
.

The space BV α,p(Rn) is similar to the original space BV α(Rn) = BV α,1(Rn),
but the integrability exponent p plays an interesting role.

Theorem (Comi-Spector-S., in preparation)

Let α ∈ (0, 1), p ∈ [1,+∞] and assume that f ∈ BV α,p(Rn).

• (subcritical case) If p ∈
[
1, n

1−α

)
, then |Dαf | ≪ H n−1.

• (supercritical case) If p ∈
[

n
1−α ,+∞

]
, then |Dαf | ≪ H

n
q −α, with 1

p + 1
q = 1.

Remark: I1−α : BV α,p(Rn) → BV 1, np
n−(1−α)p (Rn) is continuous for p ∈

(
1, n

1−α

)
.
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Open problems and research directions [1/2]

About sets and perimeter. With the distributional approach to fractional variation,
many research directions are interesting.

▷ We proved that Wα,1(Rn) ⊂ BV α(Rn) strictly only at the level of functions. Is
there χE ∈ BV α(Rn) \Wα,1(Rn) for some measurable set E ⊂ Rn?

▷ We know that blow-ups exist and have constant fractional normal. Can we
characterise them more precisely? Are they unique (in some cases)?

▷ Minimal surfaces for Pα are widely studied. What about minimal surfaces for the
fractional variation? Can we perform calibrations?

▷ Isoperimetric sets for Pα are balls (also in a quantitative sense). Are balls
isoperimetric sets for the fractional variation?
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Open problems and research directions [2/2]

About interpolation. Fractional interpolation inequalities may be derived from
real/complex Interpolation Theory.

▷ What is the real interpolation space between BV (Rn) and H1(Rn)? Note that

(H1(Rn), BV (Rn))α,p ⊂ (L1(Rn), BV (Rn))α,p = Bα
1,p(Rn) ⊃ Wα,1(Rn)

and that Bα
1,1(Rn) = Wα,1(Rn).

▷ What is the complex interp. space between BV (Rn) and H1(Rn)? Note that

(H1(Rn), BV (Rn))α,1 ⊂ (H1(Rn), BV (Rn))[α] ⊂ (H1(Rn), BV (Rn))α,∞

∩ ∩
Wα,1(Rn) ⊊ BV α(Rn) ⊊ Bα

1,∞(Rn)

(with the second inclusion strict for all n ≥ 2).

About the general theory. What is the “right” definition of BV α on a general open
set Ω ⊂ Rn? We would like to keep integration by parts, but what is the role of ∂Ω?
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Thank you for your attention!
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