A distributional approach to fractional spaces
and fractional variation

. . ) |\/ .
Giorgio Stefani S Universitiit
/TXI Basel

Ferrara, 4 March 2021

[N G.E. Comiand G. Stefani, “A distrioutional approach to fractional Sobolev spaces and
fractional variation: existence of blow-up’, §. Funct. Anal. 277 (2019), no. IO, 3373-3435.

[2] G.E. Comi and G. Stefani, “A distributional approach to fractional Sobolev spaces and
fractional variation: asymptotics I' (2019), submitted, available at arXiv:1910.134 19.

[3] E. Brue, M. Calzi, G. E. Comi and G. Stefani, “A distributional approach to fractional
Sobolev spaces and fractional variation: asymptotics I' (2020), submitted, available at
arXiv:2011.03928.

[4] G.E. Comi, D. Spector and G. Stefani, in preparation.



Fractional derivatives: three famous examples

Around 1675 Newton and Leibniz discovered Calculus. Somewhat surprisingly, the

first appearance of the concept of a fractional derivative is found in a letter written
to De 'Hopital by Lebniz in 1695!

Let us recall the three most famous fractional derivatives:

Leboniz-Lacroix (819). T = - (F(m +_1|_)1)xm_0‘
m—«

t
Riemann-Liouville (1832-1847). ®LD2f(t) = - (11_a)jt / (tf_(:))a dr

¢ pe 1 b
Caputo (196%). “Dg f(t) = T —a) /a 9 dr.
Some observations:
o they are defined just for functions of one variable;
e only Caputo’s derivative kills constants;
o Caputo’s derivative requires f to be differentiable!

Question: What about fractional gradient? Can we just take (D*!,..., D*™)?

Be careful: the “coordinate approach” gives an operator not invariant by rotations!
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Silhavy's approach: invariance properties

Recently, Silhavy proposed that a “good” fractional operator should satisfy:

e invariance with respect to translations and rotations;
e «a-homogeneity for some « € (0, 1),
e mild continuity on suitable test space, eg. C2° or Schwartz’s space ..

ldea behind: fractional operators should have a physical meaning!

For f € C(R™) and ¢ € C°(R™;R™), we consider

Ve f(z) = Mn’a/ (fy) = f@)(y — =) dy, ©ER",

[yl

Rn

and

diV{ySO<-'L') = Hn,a / (w(y>|y_<piT24>raJ(rgi — -T) dy, z € R".

n

Theorem (Silhavy, 2020)

V* and div* are determined (up to mult. const.) by the three requirements above.
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A little bit of literature on V¢

The operator fractional Riesz gradient V* = VI, _, has a long story:

e 1959, Horvath (earliest reference up to knowledge);

e 1961, implicitly mentioned in one paper by Nikol'ski-Sobolev;

e 1971, non-local continuum mechanics by Edelen-Green-Laws;

e 201113, non-local porous medium equation by Caffarelli-Soria-Vazquez,
e 2015, non-local porous medium equation by Biler-mbert-Karch;

o after 2015, fractional PDE theory and “geometric” inequalities by Shieh-Spector,
Ponce-Spector, Schikorra-Spector-Van Schaftingen;

e 2020, distributional approach by Silhavy (introducing div* = divi;_,).
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Duality, fractional Laplacian and Riesz transform

The operators V* and div* are dual, in the sense that

/ fdiv"‘godx:f/ p-Vfdz

for all f € C°(R™) and p € C°(R™; R™).
v+ 3

The operators V< and div? satisfy — div/ve = (—A)*5.

If we let

. ( 2 ) u(y)
Tu(x) := 2o T (2) /Rn Ty

be the fractional Riesz potential of u € C2°(R™; R™), then
Vef=1_uVf  divie=I_,dve.
Integrability: Vo f € L*(R") 0 L®(R") and diveyp € L (R™; R™) N L=(R™; R™).

Relax: V* and div™ are well posed also for Lip_-regular test functions.
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Leibniz’s rules for V* and div®
For any f,g € C°(R™), we have it holds

Ve (fg) = Ve +gVf+ Vi (f,9),
where

VLS 9) (@) == un,a/ (o) = F=))lgw) ~ 9(x))(y — 2) dy, z€R™

ly — x[rrott

For any f € C*(R™) and ¢ € C°(R™; R™), we also have it holds
div(fe) = fdivie +¢ - Vf +dvi(f. @),
where

(f(y) = f(@)(ely) = ¢(x)) - (y — )

ly =l

L)) = [

R

Although V* and div™ have a strong non-local behaviour, they commute with
convolutions (by linearity). In addition, Leibniz’s rules allow for approximation by
cut-off functions (careful control on non-local terms).

dy, x€R"™
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A fractional version of the Fundamental Theorem of Calculus

Let a € (0,1). If f € C°(R™), then

16 = 1@ =tin-a | (i - s ) VAR s

for any z,y € R™.

Some good news:
e we get Lt-control on translations;
e we get Li-control on smoothed-by-convolution functions;
e we get compactness for sequences with uniformly bounded RHS.

Some bad news:
e left-hand integral is on the whole space (non-locality!);
e we cannot get local Poincaré inequality;
e we cannot get relative fractional isoperimetric inequality.
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Fractional variation and the space BV*(R™)

We define
BV*([R™) = {f € L'(R™) : |D*f|(R") < +o0},
where

ID° |R™) = sup{ [ rdeds: o e 2@ R, [plmnen < 1}.
RTL

In perfect analogy with the classical BV framework:
e BV*(R™) is a Banach space and its norm is [s¢. wrt. L-convergence;

e C°°(R™) N BV*(R™) and C°(R™) are dense subspaces of BV *(R");
e given f € LY(R"), f € BV¥(R") = 3D°f € .#(R";R") such that

n

f dv*pdz = —/ ©-dD*f
Rn
for any ¢ € Lip, (R™; R™);

e unif. bounded seq. in BV*(R™) admit limit points in L*(R™) wrt. L} -conv;

e for n > 2 we have BV*(R") C L7« (R") (Gagliardo-Nirenberg-Sobolev).
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Fractional distributional Sobolev spaces and Bessel potential spaces
For p € [1,400], we define the distributional fractional Sobolev space
S*P(R™) := {f € LP(R™) : AV®f € LP(R™; R™)}.

Here Vo f € LL (R™;R™) is the weak fractional gradient of f € LP(R™):

fdveodr = —/ 0-Vefdx forallp € CP(R™;R").

Rn n

We naturally have S (R"™) C BV*(R"™) with

feSY(RY) < |DYf| < L7, D*f =Vf L™
We are also able to prove that BV*(R™) \ S“}(R") # @.

Theorem (Brué-Calzi-Comi-S., 2020)
If p € (1, +00), then S*P(R™) = L*P(R™), where

LYP(R") = {f € S'(R"): (I = A)E f € LP(R")}

is the Bessel potential space.
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Fractional Sobolev spaces and fractional operators

Forp e [1,4+00) and o € (0, 1), we let

WeP(R") = {f € LP(R™): Wﬂp 2™ / / |m = y|n+pa dxdy < —i—oo}

The fractional perimeter in an open set @ € R™ of a measurable set E C R™ is

Ixe(@) — xe)| // Ixe(z) = xe(y)
P (E:Q :/ W by + 2 da d
( ) alo  lz—ylte Z/|"+a Y "\Q CJz—yrte y|”+a v

fQ= R™, then Pa(E; Rn) = Pa(E) = [XE]W&,I(RH).

Notice that we have the extension V*: W (R") — L!(R";R"™), since
IV fllzr @i rry < el flwer@ny for all f € WoH(R™).

We thus have W 1(R") ¢ S*1(R") with f € WH(R") = Do f = Vof.¥m.
Since W1 (R™) is closed wrt. pointwise convergence, S (R™) \ WL (R") #£ &
Remarkably, if 0 < 3 < a < 1 then BV*(R") ¢ WAL (R™).
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Sets of finite fractional Caccioppoli a-perimeter

In perfect analogy with the standard BV setting, we give the following definition.

Let a € (0,1) and E C R™ be a measurable set. For any open set 2 C R™, we let

|ID*xE|(Q) = sup{/ div®edz : p € CF(R™), llell Loo (2 mm) < 1}
E

be the fractional Caccioppoli a-perimeter of E in Q. If |[D*xg|(Q) < +oo, then E
has finite fractional Caccioppoli c-perimeter in €.

Note that E C R™ has finite fractional Caccioppoli a-perimeter in € if and only if
D*xg € M(£;R™) and

/div“apd;v:—/gwdDaxE
E Q

for all ¢ € C° (4 R™).
Question: can we define a fractional version of De Giorgi's reduce boundary?
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Fractional reduced boundary

ft is now natural to give the following definition.

Let E C R™ be a set with finite fractional Caccioppoli a-perimeter in . A point
z € Q belongs to the fractional reduced boundary of E (inside ) if

zesupp(D*xg) and I lim D*x5(B(2)) esm L

=0 |D*xp|(Br())

We thus let ZF be the fractional reduced boundary of E and define

_ Dygp(B,
Ve QNFUE — SV Ve (z) = lim xe(Br(z))

= "5 € QNF*E,
r=0 |Dxp|(Br(x))

the inner unit fractional normal to E (inside €2).

We thus have the following Gauss-Green formula

/ div“wdx:—/ - Vg d|DE|.
B QnNFeE

for all ¢ € Lip, (% R™).
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Sets of finite fractional perimeter

f £ c R™ satisfies P, (F;) < +oo, then
|DaXE|<Q) S ,un,aPa<E; Q)

and
D%xg =vg|D%E| = VEZL".

Moreover, if xg € BV (R"), then

a Hn,o VE(y)
\V4 = d|D
XEe() n 1 /}Rn Iy B |Dxe|(y)

for £7-ae. x € R™.
Be careful! We have
P,(E;Q) < +oo= L"(OQANFYE) >0

even including the case x5 € BV (R™). In other words, the non-local operator vV«
produces a diffuse fractional boundary in the W regime (since we! c §«1).

Example: E = (a,b) CR = F°E =R\ {22}
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Two examples: balls and halfspaces

Example I For Z™-ae.z € R™, we have

Hn,a T
va - S — n,x b)
X () = =2 gna el
where
Y1 n—1
oB, |ter —y[rtot

which means v (z) = —z/|z| for any = # 0 and . #*B; = R" \ {0}.
Example 2. For the halfspace H, = {y - v > 0}, if - v # 0 then

227 (%) 1
RGO

In particular, Z“H,f = R™ and ugj =,

VQXHJ (z)
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Density estimates

Thanks to the invariance properties, we get

DOLXE:“” = Tn%a(lm,r)#DaXEa
where I, .(y) = (y — z)/r for z,y e R and r > 0.

Theorem (Comi-S., 2019)

It E c R™ has locally finite fractional Caccioppoli a-perimeter in R™, then for any
r € F*FE there exists r, > 0 such that

|D*xe|(Br(z)) < Anar™™%, |DXEnB,@)|(R") < Bnar™™®
for allr € (0,7).
By a standard covering argument, we thus get that
|D*Xg| < Cpo A" L FE

and therefore
dmyg (Z“E) > n — a.
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Existence of blow-ups and coarea inequality

Let Tan(E, z) be the set of all tangent sets of E at z, ie. the set of all limit points

in L{ (R™)-topology of the family {£=% : r > 0} as r — 0.

Theorem (Comi-S., 2019)

e If £ has locally finite fractional Caccioppoli a-perimeter in R™, then
Tan(E,z) # @ for all z € F*E.

e Moreover, if F' € Tan(E, z), then F has locally finite fractional Caccioppoli
a-perimeter in R™ and v (y) = v (z) for |[ID*xr|-ae. y € F*F.

What is missing: density estimates from below and we need coarea fromula.

Theorem (Comi-S., 2019)
It f € BV*(R") is such that [, |[D*x(s>n|(R™)dt < +oo, then

Daf=/RD“X{f>t} dt,  |D*f] < A|DQX{f>t}|dt'
Bad news: there exist f € BV*(R™) such that [, [D*x (s> |(R™) dt = +o0!
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Asymptotics as a — 1~

Theorem (Bourgain-Brezis-Mironescu & Davila, 2002)
Let p € [1,4+00). If f € WEP(R™), then

lim (1= a)[f]%,a,p(Rn) = Cn,p”Vf”ip(Rn;Rn)'

a—1—

f f € BV (R™), then
im (1 - a)[flwaign) = caa1|DfIR™).

a—1—

Now it is important to observe that

n T(2totl l—«
P, = 29T 2 §(1Ea )

~ asSa— 17,
59) Wn

Theorem (Comi-S., 2019)
Let p € [1,4+00). If f € WEP(R™), then
[lm7 ||Vo‘f - foLp(]Rn;Rn) - O
a—1
f f € BV(R"),then D*f — Df and |D*f| — |Df| as « — 1~ and moreover
im_|D*f|(R™) = |Df|(R™).
a—1
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I'-convergence as o« — 1~

Theorem (Ambrosio-De Philippis-Martinazzi, 2011)
Let @ C R™ be a bounded open set with Lipschitz boundary. Then

(L

loc

)- M (1 — @) Pa(E; Q) = 2w,_1 P(E; Q)

a—1—

for every measurable set £ c R™.

Theorem (Comi-S, 2019)
Let © C R™ be a bounded open set with Lipschitz boundary. Then

D(E,)- Im |Doxsl(Q) = P(E;9)

loc

for every measurable set E c R™.

Theorem (Comi-S., 2019)

Let @ C R™ be an open set such that © is bounded with Lipschitz boundary or
Q =R" Then _
D(LY)- lm |D*FI(©) = |DF|(S)

for every f € BV(R™).
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The space BV°(R™) and the Hardy space
Imitating what we did before, we define
BVO(R™) = {f € L'(R"™) : |D"f|(R") < +o0},
where
DR =] [ fdpde: € CERNRD), Iiplumqeosaoy <1}
Here div® is the dual operator of VY = IV = R, the Riesz transform

R5(0) = [ YOI =2)

ly — x|+
(in the principal value sense).

y, x€R"™

Theorem (Brue-Calzi-Comi-S., 2020)
We have BVO(R") = H'(R"), where

H'(R") = {f € L'(R") : Rf € L'(R";R")}

is the (real) Hardy space, with D°f = Rf ™ as measures for f € BVO(R™).
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Asymptotics as o — 0F
Theorem (Maz’ya-Shaposhnikova, 2002)
Letp € [1,400). If f € Upe(o,1) WHP(R™), then
M o [flyas@n) = cnpll Ay

Now it is important to observe that i, o — pin,0 @S a — 01 (no rescaling)).

Theorem (Brué-Calzi-Comi-S., 2020)
Letp € (1,400). f f € Uneo,1) W*P(R™), then

ahjol+ [Vf = Rf|lr@n;rn) = 0.
If f € H'(R™) NUue0,) W' (R™), then (actually, in H* norm)
lm V’l - R 1(Rn:Rn) — O
a_>0+|| f = RfllL1(®n;rn)
If f € Uneo) W' (R™), then

lim a/ [V f(x)| dz = nwnpin,o

a—0t

f(x) dx
R
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Fractional interpolation inequalities

We prove V* — R strongly as o — 0% via fractional interpolation inequalities.

Theorem (Brué-Calzi-Comi-S., 2020)
Let o € (0,1]. There exists ¢, o > 0 such that

|DPfI(R™) < Cna||f||H1

forall s € [0,a] and all f € H(R™) N BV*(R").

B
a

o D2 fI(R™)

Theorem (Brue-Calzi-Comi-S,, 2020)
Let p € (1,400). There exists ¢, , > 0 such that

=/
192 Flls e < el V7S | Ecinssiny 192 PN 2
foralo<y<pB<a<landal fe SO“P(R”). There exists ¢, > 0 such that
LB=ry
HV'BfHHl R7; R™) < CnHv f”Hl(Rn Rn) ”VafHEIZRn;Rn)

forallo<y<p<a<tlandal f € HS*'(R") (ie, f € H  and V*f € H').

2125



BV*P(R™) and the properties of the fractional variation

Given p € [1, +00], we define
BV*P(R") ={f € LP(R") : |[D*f|(R") < +o0},

where, as before,
|DYfI(R™) = sup{ fdv®edr : o € CX(R™;R™), |l Loo (mr; R < 1}.
Rn

The space BV*P(R") is similar to the original space BV *(R™) = BV*!(R"),
but the integrability exponent p plays an interesting role.
Theorem (Comi-Spector-S., in preparation)
Let a € (0,1), p € [1, +oc] and assume that f € BV*P(R™).
e (subcritical case) If p e [1 L) then | D f| < 1.

Tl-«o

e (supercritical case) If p € | 2=, 400, then |D*f| <« S« % withL + 1 =1
p 11—« p q

Remark: I;_,: BVP(R") — BV a=ti-as (R") is continuous for p € (1, ﬁ)
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Open problems and research directions [ /2]

About sets and perimeter. With the distributional approach to fractional variation,
many research directions are interesting.

> We proved that W 1(R") c BV*(R") strictly only at the level of functions. Is
there xp € BV*(R") \ W*1(R") for some measurable set £ C R"?

> We know that blow-ups exist and have constant fractional normal. Can we
characterise them more precisely? Are they unique (in some cases)?

> Minimal surfaces for P, are widely studied. What about minimal surfaces for the
fractional variation? Can we perform calibrations?

> Isoperimetric sets for P, are balls (also in a quantitative sense). Are balls
isoperimetric sets for the fractional variation?
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Open problems and research directions [2/2]

About interpolation. Fractional interpolation inequalities may be derived from
real/complex Interpolation Theory.

> What is the real interpolation space between BV (R™) and H'(R™)? Note that

(H'(R"™), BV(R"))a,p C (L' (R"), BV(R"))a,p = Bf,(R") D W*H(R™)
and that B (R") = W' (R™).
> What is the complex interp. space between BV (R™) and H*(R™)? Note that
(H'(R"), BV(R"))a,1 € (H'(R"), BV(R"))a) C (H'(R"), BV(R"))a,00

N N
Wl (Rm) - BV%(R"™) - Bf (R™)

=

(with the second inclusion strict for all n > 2).

About the general theory. What is the “right” definition of BV on a general open
set © ¢ R™? We would like to keep integration by parts, but what is the role of 92?
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