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Warm-up in RN

In RN the solution of heat equation{
∂tft = ∆ft on RN × (0,+∞)

f0 = f on RN

is given by convolution as Ptf = pt ∗ f , where

pt(x) =
1

(4πt)N/2
e−

|x|2
4t , x ∈ RN ,

is the heat kernel.

Hence we have ∇Ptf = pt ∗ (∇f) = Pt∇f , so that

Γ(Ptf) = |∇Ptf |2 = |Pt∇f |2 ≤ Pt(|∇f |2) = PtΓ(f)

by Jensen inequality.
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Bochner formula and Bakry-Émery CD inequality

Let (M, g) be a (complete and connected) N -dimensional smooth Riemannian
manifold with Laplace-Beltrami operator ∆. The Bochner formula states that

1
2 ∆|∇f |2g = 〈∇∆f,∇f〉g + ||Hessf ||22 + Ric(∇f,∇f).

Define

Γ(f, g) = 〈∇f,∇g〉g, Γ2(f, g) =
1
2

(
∆Γ(f, g)− Γ(f,∆g)− Γ(∆f, g)

)
.

Then the Bochner formula gives
1
2 ∆Γ(f) = Γ(∆f, f) + ||Hessf ||22 + Ric(∇f,∇f),

so that
Γ2(f) = ||Hessf ||22 + Ric(∇f,∇f),

where Γ(f) = Γ(f, f) and Γ2(f) = Γ2(f, f) for simplicity.

Using Cauchy-Schwartz inequality, we can estimate

||Hessf ||22 ≥ 1
N (∆f)2,

and so we get Bakry-Émery curvature-dimension inequality CD(K,N)

dimM ≤ N, Ric ≥ K ⇐⇒ Γ2(f) ≥ 1
N (∆f)2 +K Γ(f).
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Bakry-Émery pointwise gradient estimate on (M, g)

Assume that (M, g) satisfies Ric ≥ K (take N = ∞).

Define φ(s) = PsΓ(Pt−sf) for s ∈ [0, t]. Then

φ′(s) = 2PsΓ2(Pt−sf)
CD(K,∞)

≥ 2KPsΓ(Pt−sf) = 2Kφ(s)

and thus, by Grönwall inequality,

Γ(Ptf) ≤ e−2Kt PtΓ(f), (BE)

the Bakry-Émery pointwise gradient estimate for the heat flow. If M = RN , then
K = 0 and we recover the Euclidean case.

Differentiating (BE) at t = 0 we get CD(K,∞).

This argument works also for the case N <∞ [Wang, 2011].

4/28



Warm-up in H1

On the manifold R3 consider the non-commutative group operation

p • q = (x, y, z) • (x′, y′, z′) =
(
x+ x′, y + y′, z + z′ + 1

2 (xy
′ − yx′)

)
.

The resulting Lie group (R3, •) ≡ H1 is the (first) Heisenberg group.

There is a family of dilations: δλ(p) = (λx, λy, λ2z).

The Haar measure is the Lebesgue measure L 3 = dx dy dz.

The tangent space is spanned by

X = ∂x − y
2∂z, Y = ∂y +

x
2∂z, Z = [X,Y ] = ∂z.

We use the horizontal generators X,Y to define

dCC(p, q) = inf
{∫ 1

0

‖γ̇s‖H1 ds : γ0 = p, γ1 = q, γ̇s ∈ span{Xγs
, Yγs

}
}
.

The function dCC is the Carnot-Carathéodory (CC) distance [Chow-Rashevskii].

We work with the (not-that-bad) metric-measure space (H1, dCC,L
3).
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What about a BE gradient estimate in H1?

The canonical sub-Laplacian in H1 is ∆H1 = X2 + Y 2, which is not elliptic. But ∆H1

is hypoelliptic, so the fundamental solution pt of ∂t −∆H1 is smooth [Hörmander].
In H1 the solution of the (sub-elliptic) heat equation{

∂tft = ∆H1ft on R3 × (0,+∞)

f0 = f on R3

is thus given by convolution as

Ptf(p) = pt ⋆ f(p) =

∫
R3

pt(q
−1p) f(q) dq =

∫
R3

pt(q) f(pq
−1) dq

The horizontal gradient ∇H1 = (X,Y ) is only left-invariant, so

∇H1Ptf = ∇H1(pt ⋆ f) = (∇H1pt) ⋆ f 6=pt ⋆ (∇H1f) = Pt(∇H1f).

Theorem (Driver - Melcher, 2005)

There exists CH1> 1 such that ΓH1

(Ptf) ≤ C2
H1PtΓ

H1

(f).

This is a weak BE gradient estimate in H1: no differentiation at time t = 0!
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Wasserstein distance

Let (X, d) be a Polish (geodesic) metric space. We endow the set

P2(X) =

{
µ ∈ P(X) :

∫
X

d(x, x0)2 dµ(x) < +∞, x0 ∈ X

}
with the Wasserstein distance

W 2
2 (µ, ν) = inf

{∫
X×X

d2(x, y) dπ : π(x, y) ∈ Plan(µ, ν)
}
,

where
Plan(µ, ν) = {π ∈ P(X ×X) : (p1)#π = µ, (p2)#π = ν}.

Fact: (P2(X),W2) is a Polish (geodesic) metric space.

By Kantorovich duality formula [Fenchel-Rockafellar duality principle]

1

2
W 2

2 (µ, ν) = sup
{∫

X

Q1φ dµ−
∫
X

φ dν : φ ∈ Lip(X) with bounded support
}

where

Qsφ(x) = inf
y∈X

φ(y) +
d2(y, x)

2s

for s > 0 with Q0φ = φ is the Hopf-Lax semigroup.
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Kuwada duality

Assume (X, d) = (M, g). We have another equivalent characterization of Ric ≥ K .

Theorem (von Renesse - Sturm, 2005)

Γ(Ptf) ≤ e−2Kt PtΓ(f) ⇐⇒ W2(Ptµ,Ptν) ≤ e−KtW2(µ, ν)

A similar result is available for (X, d) = (H1, dCC).

Theorem (Kuwada, 2010)

ΓH1

(Ptf) ≤ C2
H1 PtΓ

H1

(f) ⇐⇒ W2(Ptµ,Ptν) ≤ CH1 W2(µ, ν)
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Entropy

On (X, d), put a (non-negative, σ-finite and Borel) measure m. Assume that

∃A,B > 0 : m ({x ∈ X : d(x, x0) < r}) ≤ AeBr2 . (exp.ball)

The (Boltzmann) entropy Entm : P2(X) → (−∞,+∞] is

Entm(µ) =


∫
X

ϱ log ϱ dm if µ = ϱm ∈ P2(X),

+∞ otherwise.

Assumption (exp.ball) ensures that Ent(µ) > −∞ for all µ ∈ P2(X).

If (X, d,m) = (M, g) with Ric ≥ K , then

Bishop volume comparison Theorem ⇒ (exp.ball).

If (X, d,m) = (H1, dCC,L
3), then

group structure and dilations ⇒ (exp.ball),

because

L 3(BCC(p, r)) = L 3(BCC(0, r)) = L 3(δr(BCC(0, 1))) = r4 L 3(BCC(0, 1)).
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Geodesic convexity of entropy and CD(K,∞)

Assume (X, d,m) = (M, g). We have yet another equivalence with Ric ≥ K .

Theorem (von Renesse - Sturm, 2005)

Ric ≥ K ⇐⇒ Entm(µs) ≤ (1−s)Entm(µ0)+sEntm(µ1)− K
2 s(1−s)W

2
2 (µ0, µ1)

where s 7→ µs is any (constant unit speed) W2-geodesic joining µ0 and µ1.

Observation [Lott-Villani & Sturm]: the W2-geodesic K-convexity of Entm does NOT
need the smoothness of (M, g), it ONLY needs d and m. Hence it makes sense in
ANY metric-measure space.

Definition: (X, d,m) is CD(K,∞) if Entm is W2-geodesic K-convex.

Bad news: (H1, dCC,L
3) does not satisfy the CD(K,∞) property! [Juillet, 2009]

On (H1, dCC,L
3) it actually holds [Balogh-Kristaly-Sipos, 2018]

EntL 3(µs) ≤ (1− s)EntL 3(µ0) + sEntL 3(µ1) + w(s)

where w(s) = −2 log
(
(1− s)(1−s)ss

)
for s ∈ [0, 1] (concave correction).
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Heat flow in (X, d,m)

We now work in a metric-measure space (X, d,m). The Cheeger energy is

Ch(f) = inf
{
lim inf

n

∫
X

|Dfn|2 dm : fn → f in L2(X,m), fn ∈ Lip(X)

}
.

Here |Df |(x) = lim sup
y→x

|f(y)−f(x)|
d(x,y) denotes the slope of f ∈ Lip(X;R).

Properties: Cheeger energy is convex, l.s.c. and its domain W1,2
(X, d,m) is dense.

The heat flow in (X, d,m) is the (Hilbertian) gradient flow of Ch in L2(X,m): for
f0 ∈ L2(X,m), ∃ t 7→ ft = Ptf0 ∈ Liploc((0,+∞); L2(X,m)) such that

ft −→
t→0

f0 in L2(X,m) and
d
dt
ft ∈ −∂−Ch(ft) for a.e. t > 0.

The Laplacian −∆d,mf ∈ ∂−Ch(f) the element of minimal L2(X,m)-norm.

CAUTION: W1,2
(X, d,m) with ‖f‖W1,2 =

(
‖f‖2L2 + Ch(f)

)1/2 is Banach, but not
Hilbert in general! For example, consider (Rn, ‖ · ‖p,L n) for p 6= 2.
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Non-smooth Calculus on (X, d,m)

Theorem (Ambrosio - Gigli - Savaré, 2014)

Any f ∈ W1,2
(X, d,m) has a (unique) weak gradient |Df |w ∈ L2(X,m) such that

Ch(f) = 1

2

∫
X

|Df |2w dm

Theorem (Ambrosio - Gigli - Savaré, 2014)

|Df |w behaves like the ‘modulus of the gradient’:
• locality: |Df |w = |Dg|w m-a.e. on {f − g = c};
• Leibniz rule: |D(fg)|w ≤ |f | |Dg|w + |Df |w |g|;
• chain rule: |Dφ(f)|w ≤ |φ′(f)| |Df |w ;
• approximation: Lipb(X) ∩ L2(X,m) is dense in energy in W1,2

(X, d,m).
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Quadratic Cheeger energy

We say that Ch is quadratic if Ch(f + g) + Ch(f − g) = 2Ch(f) + 2Ch(g).

Fact 1: Ch is quadratic ⇒ W1,2
(X, d,m) is Hilbert and Pt is linear.

Fact 2: Ch is quadratic ⇒ Γ(f) = |Df |2w is quadratic.

Theorem

Γ(f, g) = |D(f + g)|2w − |Df |2w − |Dg|2w is ‘the scalar product of gradients’:
• Leibniz rule: Γ(fg, h) = g Γ(f, h) + f Γ(g, h);
• chain rule: Γ(φ(f), g) = φ′(f) Γ(f, g).

Theorem

If Ch is quadratic then the (Dirichlet) energy E(f) = 2Ch(f) satisfies

E(f, g) =
∫
X

Γ(f, g) dm = −
∫
X

g∆d,mf dm.

The Laplacian ∆d,m satisfies the chain rule

∆d,m(φ ◦ f) = φ′(f)∆d,mf + φ′′(f) Γ(f).
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Equivalence in RCD(K,∞) spaces

Definition: (X, d,m) is RCD(K,∞) if it is CD(K,∞) and Ch is quadratic. [AGS]

Theorem (many people...)

Assume (X, d,m) has a quadratic Ch. TFAE:

BE(K,∞): Γ(Ptf) ≤ e−2Kt PtΓ(f)

Kuwada: W2(Ptµ,Ptν) ≤ e−KtW2(µ, ν)

CD(K,∞): Entm(µs) ≤ (1− s)Entm(µ0) + sEntm(µ1)− K
2 s(1− s)W 2

2 (µ0, µ1)

EVIK : d
dt

W 2
2 (Ptµ,ν)

2 + K
2 W

2
2 (Ptµ, ν) + Ent(Ptµ) ≤ Ent(ν)

Remark: EVIK stands for Evolution Variational Inequality and encodes the fact that
the heat flow is the metric gradient flow of the entropy in the Wasserstein space.

14/28



Non-CD(K,∞) spaces: the Carnot groups

A Carnot group G is a connected, simply connected, stratified Lie group with

Lie(G) = V1 ⊕ V2 ⊕ · · · ⊕ Vκ, Vi = [V1, Vi−1], [V1, Vκ] = {0}.

By Campbell-Hausdorff formula, G ∼ (Rn, ·) using exponential coordinates.

We call HG = V1 the horizontal directions. If V1 = span{X1, . . . , Xm}, then
∇Gf =

∑m
j=1(Xjf)Xj ∈ V1 and ∆G =

∑m
j=1X

2
j (Kohn’s sub-Laplacian).

The Carnot-Carathéodory distance of x, y ∈ G is

dCC(x, y) = inf
{∫ 1

0

‖γ̇s‖G ds : γ0 = x, γ1 = y, γ̇t ∈ V1

}
.

Then (G, dcc,L n) is Polish, geodesic and L n(BCC(x, r)) = CrQ, Q ∈ N.
Example: for H1 it is κ = 2, V1 = span{X,Y }, V2 = span{Z}, Q = 4.

Theorem (Ambrosio - S., 2018)

The metric-measure space (G, dCC,L
n) is not CD(K,∞)!

15/28



Another non-CD(K,∞) space: the SU(2) group

SU(2) = Lie group of 2× 2 complex unitary matrices with determinant 1.

Lie algebra su(2) = 2× 2 complex unitary skew-Hermitian matrices with trace 0.

A basis of su(2) is given by the Pauli matrices

X =

(
0 1
−1 0

)
, Y =

(
0 i
i 0

)
, Z =

(
i 0
0 −i

)
,

satisfying the relations

[X,Y ] = 2Z, [Y, Z] = 2X, [Z,X] = 2Y.

Similarly as before, we define dCC and ∇SU(2)f = (Xf)X + (Y f)Y.

Fact: (SU(2), dCC) is a Polish geodesic metric space.

Using the cylindric coordinates (for r ∈ [0, π2 ), ϑ ∈ [0, 2π] and ζ ∈ [−π, π])

(r, ϑ, z) 7→ exp(r cosϑX + r sinϑY ) exp(ζ Z) =
(

eiζ cos r ei(ϑ−ζ) sin r
−e−i(ϑ−ζ) sin r e−iζ cos r

)
the Haar measure σ ∈ P(SU(2)) is dσ = 1

4π2 sin(2r) dr dϑ dζ.
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Why Carnot groups and SU(2)?

Theorem (Melcher, 2008)

There exists CG ≥ 1 such that ΓG(Ptf) ≤ C2
G PtΓ

G(f).

Remark: CG = 1 ⇐⇒ G is commutative [Ambrosio-S., 2018].

Theorem (Baudoin - Bonnefont, 2008)

There exists CSU(2)≥
√
2 such that ΓSU(2)(Ptf) ≤ C2

SU(2)e
−4t PtΓ

SU(2)(f).

Question: BE ⇐⇒ Kuwada ⇐⇒ RCD ⇐⇒ EVI also for G and SU(2)?

Fact: [Kuwada, 2009] gives the equivalence with the W2-contraction property.
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Admissible metric-measure groups

Assume (X, d,m) has Ch quadratic.

Definition (Admissible group)

(X, d,m) is an admissible group if:

• the metric space (X, d) is locally compact;
• the set X is a topological group, i.e. (x, y) 7→ xy and x 7→ x−1 are continuous;
• d is left-invariant, i.e. d(zx, zy) = d(x, y) for all x, y, z ∈ X ;
• m is a left-invariant Haar measure, i.e. m is a Radon measure such that

m(xE) = m(E) for all x ∈ X and all Borel set E ⊂ X ;
• X is unimodular, i.e. m is also right-invariant.

Remark: Carnot groups and SU(2) are admissible groups.
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Main result

Let c : [0,+∞) → (0,+∞) be such that c, c−1 ∈ L∞([0, T ]) for all T > 0.

Idea: c is the curvature function and generalizes t 7→ e−Kt.

Examples: for Carnot groups c(t) = CG and for SU(2) c(t) = CSU(2)e
−2t.

Define R(a, b) =
∫ 1

0
c−2((1− s)a+ sb) ds for 0 ≤ a ≤ b.

Theorem (S., 2020)

Let (X, d,m) be an admissible group + some technical hypotheses. TFAE:

BEw : Γ(Ptf) ≤ c2(t)PtΓ(f)

Kuwada: W2(Ptµ,Ptν) ≤ c(t)W2(µ, ν)

CDw : Entm(Pt+hµs) ≤ (1− s)Entm(Ptµ0) + sEntm(Ptµ1)

+ s(1−s)
2h

(
1

R(t,t+h) W
2
2 (µ0, µ1)−W 2

2 (Ptµ0,Ptµ1)
)

for t ≥ 0 and h > 0, with s 7→ µs a W2-geodesic

EVIw : W 2
2 (Pt1µ1,Pt0µ0)− W 2

2 (µ1,µ0)
R(t0,t1)

≤ 2(t1 − t0)
(

Entm(Pt0µ0)− Entm(Pt1µ1)
)

for 0 ≤ t0 ≤ t1
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Comments

CDw : Entm(Pt+hµs) ≤ (1− s)Entm(Ptµ0) + sEntm(Ptµ1)

+ s(1−s)
2h

(
1

R(t,t+h) W
2
2 (µ0, µ1)−W 2

2 (Ptµ0,Ptµ1)
)

for t ≥ 0 and h > 0

EVIw : W 2
2 (Pt1µ1,Pt0µ0)− W 2

2 (µ1,µ0)
R(t0,t1)

≤ 2(t1 − t0)
(

Entm(Pt0µ0)− Entm(Pt1µ1)
)

for 0 ≤ t0 ≤ t1

1. The equivalence BEw ⇐⇒ Kuwada is known, see [Kuwada, 2009] and [Ambrosio
- Gigli - Savaré, 2015], but we (re)do the proof because of some technical issues.

2. If t = 0 in CDw then Entm(Phµs) ≤ (1− s)Entm(µ0) + sEntm(µ1)

+A(h)
2 s(1− s)W 2

2 (µ0, µ1) with A(h) =
R(0,h)−1−1

h for h > 0.

3. CDw ⇒ Kuwada is easy: multiply by h > 0 and then send h→ 0+.

4. EVIw ⇒ CDw follows from a general argument, see [Daneri - Savaré, 2008].

5. We only need to prove BEw ⇒ EVIw . The proof is an adaptation of [Ambrosio -
Gigli - Savaré, 2015] and [Erbar - Kuwada - Sturm, 2015].
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Other comments and future developments

CDw : Entm(Pt+hµs) ≤ (1− s)Entm(Ptµ0) + sEntm(Ptµ1)

+ s(1−s)
2h

(
1

R(t,t+h) W
2
2 (µ0, µ1)−W 2

2 (Ptµ0,Ptµ1)
)

for t ≥ 0 and h > 0

EVIw : W 2
2 (Pt1µ1,Pt0µ0)− W 2

2 (µ1,µ0)
R(t0,t1)

≤ 2(t1 − t0)
(

Entm(Pt0µ0)− Entm(Pt1µ1)
)

for 0 ≤ t0 ≤ t1

1. We need the group structure of X to exploit the de-singularization property of the
convolution: ϱ ⋆ µ� m. Can we avoid this assumption? Example: metric graphs.

Note: BEw ⇒ Ptµ� m, but the W2-metric velocity of s 7→ µt
s = Ptµs cannot be

related to the one of s 7→ µs if c(0+) > 1 (example: Carnot groups and SU(2)!).

2. Consider a sub-Riemannian manifold M (possibly, without a group structure). Is
there a BEw inequality also encoding information about the dimension of M?

3. RCD(K,∞) and EVIK imply several nice properties about (X, d,m) (MCP,
gradient flows, m-GH stability,...). What can we deduce from RCDw and EVIw?
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Proof of BEw ⇒ EVIw [1/6]

Let s ∈ [0, 1] and assume s 7→ µs = fsm is joining µ0, µ1 ∈ P2(X).

Define a new curve s 7→ µ̃s = f̃sm as

µ̃s = Pη(s)µϑ(s), so that f̃s = Pη(s)fϑ(s),

where η ∈ C2
([0, 1]; [0,+∞)) and ϑ ∈ C1

([0, 1]; [0, 1]) with ϑ(0) = 0 and ϑ(1) = 1.

At least formally, we can compute

d
ds
f̃s = η̇(s)∆Pη(s)fϑ(s) + ϑ̇(s)Pη(s)ḟϑ(s)

for s ∈ (0, 1).
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Proof of BEw ⇒ EVIw [2/6]

On the one hand, integrating by parts, we have

d
ds

Entm(µ̃s) =
d
ds

∫
X

f̃s log f̃s dm

=

∫
X

(1 + log f̃s)
d
ds
f̃s dm

= −η̇(s)
∫
X

p′(f̃s) Γ(f̃s) dm+ ϑ̇(s)

∫
X

p(f̃s)Pη(s)ḟϑ(s) dm

for s ∈ (0, 1), where p(r) = 1 + log r for all r > 0.

Since p′(r) = r(p′(r))2, by the chain rule Γ(φ(f)) = (φ′(f))2 Γ(f), we can write

d
ds

Entm(µ̃s) = −η̇(s)
∫
X

Γ(gs) dµ̃s + ϑ̇(s)

∫
X

ḟϑ(s) Pη(s)gs dm

for s ∈ (0, 1), where gs = p(f̃s) for brevity.
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Proof of BEw ⇒ EVIw [3/6]

On the other hand, by Kantorovich duality, we have

1

2
W 2

2 (µ, ν) = sup
{∫

X

Q1φ dµ−
∫
X

φ dν : φ ∈ Lip(X) with bounded support
}
,

where

Qsφ(x) = inf
y∈X

φ(y) +
d2(y, x)

2
, for x ∈ X and s > 0,

is the Hopf-Lax infimum-convolution semigroup.

Recalling that φs = Qsφ solves the Hamilton-Jacobi equation ∂sφs +
1
2 |Dφs|2 = 0,

again integrating by parts, we can compute

d
ds

∫
X

φs f̃s dm =

∫
X

∂sφs dµ̃s +

∫
X

φs
d
ds
f̃s dm

= −1

2

∫
X

Γ(φs) dµ̃s − η̇(s)

∫
X

Γ(φs, f̃s) dm

+ ϑ̇(s)

∫
X

ḟϑ(s) Pη(s)φs dm

for s ∈ (0, 1).
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Proof of BEw ⇒ EVIw [4/6]

Combinining the above inequalities, we get

d
ds

∫
X

φs f̃s dm+ η̇(s)
d
ds

Entm(µ̃s) ≤ −1

2

∫
X

(
Γ(φs) + η̇(s)2 Γ(gs)

)
dµ̃s

− η̇(s)

∫
X

Γ(φs, f̃s) dm+ ϑ̇(s)

∫
X

ḟϑ(s) Pη(s)(φs + η̇(s) gs) dm

for s ∈ (0, 1), forgetting the term − η̇(s)2

2

∫
X
Γ(gs) dµ̃s ≤ 0.

Now Γ(φs + η̇(s) gs) = Γ(φs) + 2 η̇(s) Γ(φs, gs) + η̇(s)2 Γ(gs) and, by the chain
rule, Γ(φs, gs) = Γ(φs, p(f̃s)) = p′(f̃s) Γ(φs, f̃s). Since r p′(r) = 1, we have∫

X

Γ(φs, gs) dµ̃s =

∫
X

f̃s p
′(f̃s) Γ(φs, f̃s) dm =

∫
X

Γ(φs, f̃s) dm,

and thus the above inequality simplifies to

d
ds

∫
X

φs f̃s dm+ η̇(s)
d
ds

Entm(µ̃s) ≤ −1

2

∫
X

Γ(φs + η̇(s) gs) dµ̃s

+ ϑ̇(s)

∫
X

ḟϑ(s) Pη(s)(φs + η̇(s) gs) dm

for s ∈ (0, 1).
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Proof of BEw ⇒ EVIw [5/6]

At this point, the crucial information we need to know about the chosen curve
s 7→ µs = fsm is that ∫

X

ḟs ψ dm ≤ |µ̇s|
(∫

X

Γ(ψ) dµs

) 1
2

for all sufficiently ‘nice’ functions ψ, where |µ̇s| = lim
h→0

W2(µs+h,µs)
h is the metric

velocity of the curve s 7→ µs with respect to the Wasserstein distance.

With this property at disposal, we may choose ψ = Pη(s)(φs + η̇(s) gs) and estimate

ϑ̇(s)

∫
X

ḟϑ(s) Pη(s)(φs + η̇(s) gs) dm =

∫
X

(
d
ds
fϑ(s)

)
Pη(s)(φs + η̇(s) gs) dm

≤ |ϑ̇(s)| |µ̇ϑ(s)|
(∫

X

Γ(Pη(s)(φs + η̇(s) gs)) dµs

) 1
2

≤ c2(η(s))
2

ϑ̇(s)2 |µ̇ϑ(s)|2 +
c−2(η(s))

2

∫
X

Γ(Pη(s)(φs + η̇(s) gs)) dµs

≤ c2(η(s))
2

ϑ̇(s)2 |µ̇ϑ(s)|2 +
1

2

∫
X

Γ(φs + η̇(s) gs) dµ̃s.
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Proof of BEw ⇒ EVIw [6/6]

By combining the above inequalities, we conclude that

d
ds

∫
X

φs f̃s dm+ η̇(s)
d
ds

Entm(µ̃s) ≤
c2(η(s))

2
ϑ̇(s)2 |µ̇ϑ(s)|2

for s ∈ (0, 1).

If we choose ϑ̇(s) = c−2(η(s)), then we can integrate in s ∈ (0, 1) so that, by
Kantorovich duality, we finally get

1

2
W 2

2 (Pη(1)µ1,Pη(0)µ0)−
1

2R(η)
W 2

2 (µ1, µ0) + η̇(1)Entm(Pη(1)µ1)

≤ η̇(0)Entm(Pη(0)µ0) +

∫ 1

0

η̈(s)Entm(Pη(s)µϑ(s)) ds,

where R(η) =
∫ 1

0
c−2(η(s)) ds.

Since we have no information about s 7→ Entm(Pη(s)µϑ(s)), we choose
η(s) = (1− s)t0 + st1 for s ∈ [0, 1], where 0 ≤ t0 ≤ t1 are fixed, and we get EVIw .
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Thank you for your attention!
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