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No paradoxes without utility

Around 1675 Newton and Leibniz discovered Calculus and nowadays derivative is a
basic tool of any mathematician.

Somewhat surprisingly, the first appearance of the concept of a fractional
derivative is found in a letter written to De l'Hôpital by Leibniz in 1695!

What is the ``half derivative'' of x? It's
d

1
2x

dx
1
2

= c
√
x (with c = 2√

π
by Lacroix, 1819).

Leibniz's answer to De L'Hôpital, 30 September 1695:

``Il y a de l'apparence qu'on tirera un jour des consequences bien utiles de ces
paradoxes, car il n'y a gueres de paradoxes sans utilité.''

``This is an apparent paradox from which, one day, useful consequences will be
drawn, since there are no paradoxes without utility.''
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Three famous examples

Let us recall three famous fractional derivatives:

Leibniz-Lacroix (1819):
dαxm

dxα
=

Γ(m+ 1)

Γ(m− α+ 1)
xm−α

Riemann-Liouville (1832-1847): RLDα
a f(t) =

1

Γ(1− α)

d

dt

! t

a

f(τ)

(t− τ)α
dτ

Caputo (1967): CDα
a f(t) =

1

Γ(1− α)

! t

a

f ′(τ)

(t− τ)α
dτ.

Some observations:

• they are defined just for functions of one variable;
• only Caputo's derivative kills constants;
• Caputo's derivative requires f to be differentiable!

Question: What about fractional gradient? Can we just take
"
Dα,1, . . . , Dα,n

#
?

Be careful: the ``coordinate approach'' gives an operator not invariant by rotations!
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v

Silhav
/

y's approach: invariance properties

Recently,
v

Silhav
/
y proposed that a ``good'' fractional operator should satisfy:

• invariance with respect to translations and rotations;
• α-homogeneity for some α ∈ (0, 1);
• mild continuity on suitable test space, e.g. C∞

c or Schwartz's space S .

Idea behind: fractional operators should have a physical meaning!

For f ∈ C∞
c (Rn) and ϕ ∈ C∞

c (Rn;Rn), we consider

∇αf(x) := µn,α

!

Rn

(f(y)− f(x))(y − x)

|y − x|n+α+1
dy, x ∈ Rn,

and

divαϕ(x) := µn,α

!

Rn

(ϕ(y)− ϕ(x)) · (y − x)

|y − x|n+α+1
dy, x ∈ Rn.

Theorem (
v

Silhav
/
y, 2020)

∇α and divα are determined (up to mult. const.) by the three requirements above.
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A little bit of literature

The operator ∇α ≡ ∇I1−α has in fact a long story:

• Horv
/
ath, 1959 (earliest reference up to knowledge);

• implicitly mentioned in Nikol’ski-Sobolev, 1961;
• non-local continuum mechanics by Edelen-Green-Laws, 1971;
• non-local porous medium equation Caffarelli-Soria-Vazquez, 2011-13, and

Biler-Imbert-Karch, 2015;
• fractional PDE theory and ``geometric'' inequalities by Shieh-Spector,

Ponce-Spector, Schikorra-Spector-Van Schaftingen, all after 2015;

• distributional approach by
v

Silhav
/
y, 2020.
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Duality, fractional Laplacian and Riesz transform

The operators ∇α and divα are dual, in the sense that!

Rn

f divαϕ dx = −
!

Rn

ϕ ·∇αf dx

for all f ∈ C∞
c (Rn) and ϕ ∈ C∞

c (Rn;Rn).

The operators ∇α and divβ satisfy − divβ∇α = (−∆)
α+β

2 .

If we let

Iαu(x) :=
Γ
"
n−α
2

#

2απ
n
2 Γ

"
α
2

#
!

Rn

u(y)

|x− y|n−α
dy

be the fractional Riesz potential of u ∈ C∞
c (Rn;Rm), then

∇αf = I1−α∇f, divαϕ = I1−α divϕ.

Integrability: ∇αf ∈ L1(Rn) ∩ L∞(Rn) and divαϕ ∈ L1(Rn;Rn) ∩ L∞(Rn;Rn).

Relax: ∇α and divα are well posed also for Lipc-regular test functions.
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Leibniz's rules for ∇α and divα

For any f, g ∈ C∞
c (Rn), we have it holds

∇α(fg) = f∇αg + g∇αf +∇α
NL(f, g),

where

∇α
NL(f, g)(x) := µn,α

!

Rn

(f(y)− f(x))(g(y)− g(x))(y − x)

|y − x|n+α+1
dy, x ∈ Rn.

For any f ∈ C∞
c (Rn) and ϕ ∈ C∞

c (Rn;Rn), we also have it holds

divα(fϕ) = f divαϕ+ ϕ ·∇αf + divαNL(f,ϕ),

where

divαNL(f,ϕ)(x) := µn,α

!

Rn

(f(y)− f(x))(ϕ(y)− ϕ(x)) · (y − x)

|y − x|n+α+1
dy, x ∈ Rn.

Although ∇α and divα have a strong non-local behaviour, they commute with
convolutions (by linearity). In addition, Leibniz's rules allow for approximation by
cut-off functions (careful control on non-local terms).
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A fractional version of the Fundamental Theorem of Calculus

Let α ∈ (0, 1). If f ∈ C∞
c (Rn), then

f(y)− f(x) = µn,−α

!

Rn

$
z − x

|z − x|n+1−α
− z − y

|z − y|n+1−α

%
·∇αf(z) dz

for any x, y ∈ Rn.

Some good news:
• we get L1-control on translations;
• we get L1-control on smoothed-by-convolution functions;
• we get compactness for sequences with uniformly bounded RHS.

Some bad news:
• left-hand integral is on the whole space (non-locality!);
• we cannot get local Poincaré inequality;
• we cannot get relative fractional isoperimetric inequality.
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Fractional variation and the space BV α(Rn)

We define
BV α(Rn) =

&
f ∈ L1(Rn) : |Dαf |(Rn) < +∞

'
,

where

|Dαf |(Rn) = sup
(!

Rn

f divαϕ dx : ϕ ∈ C∞
c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1

)
.

In perfect analogy with the classical BV framework:

• BV α(Rn) is a Banach space and its norm is l.s.c. w.r.t. L1-convergence;
• C∞(Rn) ∩BV α(Rn) and C∞

c (Rn) are dense subspaces of BV α(Rn);
• given f ∈ L1(Rn), f ∈ BV α(Rn) ⇐⇒ ∃Dαf ∈ M(Rn;Rn) such that

!

Rn

f divαϕ dx = −
!

Rn

ϕ · dDαf

for any ϕ ∈ Lipc(R
n;Rn);

• unif. bounded seq. in BV α(Rn) admit limit points in L1(Rn) w.r.t. L1
loc-conv.;

• for n ≥ 2 we have BV α(Rn) ⊂ L
n

n−α (Rn) (Gagliardo-Nirenberg-Sobolev).
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Fractional distributional Sobolev spaces and Bessel potential spaces

For p ∈ [1,+∞], we define the distributional fractional Sobolev space

Sα,p(Rn) := {f ∈ Lp(Rn) : ∃∇αf ∈ Lp(Rn;Rn)}.

Here ∇αf ∈ L1
loc(R

n;Rn) is the weak fractional gradient of f ∈ Lp(Rn):

!

Rn

f divαϕ dx = −
!

Rn

ϕ ·∇αf dx for all ϕ ∈ C∞
c (Rn;Rn).

We naturally have Sα,1(Rn) ⊂ BV α(Rn) with

f ∈ Sα,1(Rn) ⇐⇒ |Dαf | ≪ L n, Dαf = ∇αf L n.

We are also able to prove that BV α(Rn) \ Sα,1(Rn) ∕= ∅.

For p ∈ (1,+∞), we prove that Sα,p(Rn) = Lα,p(Rn), where

Lα,p(Rn) = {f ∈ S ′(Rn) : (I −∆)
α
2 f ∈ Lp(Rn)}

is the Bessel potential space.
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Fractional Sobolev spaces and fractional operators

For p ∈ [1,+∞) and α ∈ (0, 1), we let

Wα,p(Rn) =

(
f ∈ Lp(Rn) : [f ]pWα,p(Rn) =

!

Rn

!

Rn

|f(x)− f(y)|p
|x− y|n+pα

dx dy < +∞
)
.

The fractional perimeter in an open set Ω ⊂ Rn of a measurable set E ⊂ Rn is

Pα(E;Ω) =

!

Ω

!

Ω

|χE(x)− χE(y)|
|x− y|n+α

dx dy + 2

!

Ω

!

Rn\Ω

|χE(x)− χE(y)|
|x− y|n+α

dx dy.

If Ω = Rn, then Pα(E;Rn) = Pα(E) = [χE ]Wα,1(Rn).

Notice that we have the extension ∇α : Wα,1(Rn) → L1(Rn;Rn), since
‖∇αf‖L1(Rn;Rn) ≤ µn,α[f ]Wα,1(Rn) for all f ∈ Wα,1(Rn).

We thus have Wα,1(Rn) ⊂ Sα,1(Rn) with f ∈ Wα,1(Rn) ⇒ Dαf = ∇αfL n.

Since Wα,1(Rn) is closed w.r.t. pointwise convergence, Sα,1(Rn) \Wα,1(Rn) ∕= ∅.

Remarkably, if 0 < β < α < 1 then BV α(Rn) ⊂ W β,1(Rn).
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Sets of finite fractional Caccioppoli α-perimeter

In perfect analogy with the standard BV setting, we give the following definition.

Let α ∈ (0, 1) and E ⊂ Rn be a measurable set. For any open set Ω ⊂ Rn, we let

|DαχE |(Ω) = sup
(!

E

divαϕ dx : ϕ ∈ C∞
c (Ω;Rn), ‖ϕ‖L∞(Ω;Rn) ≤ 1

)

be the fractional Caccioppoli α-perimeter of E in Ω. If |DαχE |(Ω) < +∞, then E
has finite fractional Caccioppoli α-perimeter in Ω.

Note that E ⊂ Rn has finite fractional Caccioppoli α-perimeter in Ω if and only if
DαχE ∈ M(Ω;Rn) and !

E

divαϕ dx = −
!

Ω

ϕ · dDαχE

for all ϕ ∈ C∞
c (Ω;Rn).

Question: can we define a fractional version of De Giorgi's reduce boundary?
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Fractional reduced boundary

It is now natural to give the following definition.

Let E ⊂ Rn be a set with finite fractional Caccioppoli α-perimeter in Ω. A point
x ∈ Ω belongs to the fractional reduced boundary of E (inside Ω) if

x ∈ supp(DαχE) and ∃ lim
r→0

DαχE(Br(x))

|DαχE |(Br(x))
∈ Sn−1.

We thus let FαE be the fractional reduced boundary of E and define

ναE : Ω ∩ FαE → Sn−1, ναE(x) := lim
r→0

DαχE(Br(x))

|DαχE |(Br(x))
, x ∈ Ω ∩ FαE,

the inner unit fractional normal to E (inside Ω).

We thus have the following Gauss-Green formula!

E

divαϕ dx = −
!

Ω∩FαE

ϕ · ναE d|DαχE |.

for all ϕ ∈ Lipc(Ω;R
n).
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Sets of finite fractional perimeter

If E ⊂ Rn satisfies Pα(E;Ω) < +∞, then

|DαχE |(Ω) ≤ µn,αPα(E;Ω)

and
DαχE = ναE |DαχE | = ∇αχE L n.

Moreover, if χE ∈ BV (Rn), then

∇αχE(x) =
µn,α

n+ α− 1

!

Rn

νE(y)

|y − x|n+α−1
d|DχE |(y)

for L n-a.e. x ∈ Rn.

Be careful! We have
Pα(E;Ω) < +∞ ⇒ L n(Ω ∩ FαE) > 0

including even the case χE ∈ BV (Rn). In other words, the non-local operator ∇α

produces a diffuse fractional boundary in the Wα,1 regime (⊂ Sα,1).

Example: E = (a, b) ⊂ R ⇒ FαE = R \
&

a+b
2

'
!
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Two examples: balls and halfspaces

Example 1. For L n-a.e. x ∈ Rn, we have

∇αχB1
(x) = − µn,α

n+ α− 1
gn,α(|x|)

x

|x| ,

where
gn,α(t) :=

!

∂B1

y1
|te1 − y|n+α−1

dH n−1(y) > 0, for any t ≥ 0,

which means ναB1
(x) = −x/|x| for any x ∕= 0 and FαB1 = Rn \ {0}.

Example 2. For the halfspace H+
ν = {y · ν ≥ 0}, if x · ν ∕= 0 then

∇αχH+
ν
(x) =

2α−1Γ
"
α
2

#
√
π Γ

"
1−α
2

# 1

|x · ν|α ν.

In particular, FαH+
ν = Rn and να

H+
ν
≡ ν .
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Density estimates

Thanks to the invariance properties, we get

DαχE−x
r

=
1

rn−α
(Ix,r)#D

αχE ,

where Ix,r(y) = (y − x)/r for x, y ∈ Rn and r > 0.

Theorem (Comi-S., 2019)

There exist An,α, Bn,α > 0 as follows. If E ⊂ Rn has locally finite fractional
Caccioppoli α-perimeter in Rn, then for any x ∈ FαE there exists rx > 0 such that

|DαχE |(Br(x)) ≤ An,αr
n−α, |DαχE∩Br(x)|(Rn) ≤ Bn,αr

n−α

for all r ∈ (0, rx).

By a standard covering argument, we thus get that
|DαχE | ≤ Cn,αH n−α FαE

for some Cn,α > 0 and, consequently,
dimH (FαE) ≥ n− α.
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Existence of blow-ups and coarea inequality

Let Tan(E, x) be the set of all tangent sets of E at x, i.e. the set of all limit points
in L1

loc(R
n)-topology of the family(

E − x

r
: r > 0

)
as r → 0.

Theorem (Comi-S., 2019)

If E has locally finite fractional Caccioppoli α-perimeter in Rn, then Tan(E, x) ∕= ∅
for all x ∈ FαE . Moreover, if F ∈ Tan(E, x), then F has locally finite fractional
Caccioppoli α-perimeter in Rn and ναF (y) = ναE(x) for |DαχF |-a.e. y ∈ FαF .

What is missing: density estimates from below and we need coarea fromula.

Theorem (Comi-S., 2019)

If f ∈ BV α(Rn) is such that
*
R |Dαχ{f>t}|(Rn) dt < +∞, then

Dαf =

!

R
Dαχ{f>t} dt, |Dαf | ≤

!

R
|Dαχ{f>t}| dt.

Bad news: there exist f ∈ BV α(Rn) such that
*
R |Dαχ{f>t}|(Rn) dt = +∞!
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Asymptotics as α → 1−

Theorem (Maz'ya-Shaposhnikova & Dávila, 2002)

Let p ∈ [1,+∞). If f ∈ W 1,p(Rn), then

lim
α→1−

(1− α)[f ]pWα,p(Rn) = cn,p‖∇f‖pLp(Rn;Rn).

If f ∈ BV (Rn), then
lim

α→1−
(1− α)[f ]Wα,1(Rn) = cn,1|Df |(Rn).

Now it is important to observe that

µn,α = 2απ−n
2
Γ(n+α+1

2 )
Γ( 1−α

2 )
∼ 1− α

ωn
as α → 1−.

Theorem (Comi-S., 2019)

Let p ∈ [1,+∞). If f ∈ W 1,p(Rn), then

lim
α→1−

‖∇αf −∇f‖Lp(Rn;Rn) = 0.

If f ∈ BV (Rn), then Dαf ⇀ Df and |Dαf | ⇀ |Df | as α → 1− and moreover

lim
α→1−

|Dαf |(Rn) = |Df |(Rn).
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Γ-convergence as α → 1−

Theorem (Ambrosio-De Philippis-Martinazzi, 2011)

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Then

Γ(L1
loc) - lim

α→1−
(1− α)Pα(E;Ω) = 2ωn−1P (E;Ω)

for every measurable set E ⊂ Rn.

Theorem (Comi-S., 2019)

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Then

Γ(L1
loc) - lim

α→1−
|DαχE |(Ω) = P (E;Ω)

for every measurable set E ⊂ Rn.

Theorem (Comi-S., 2019)

Let Ω ⊂ Rn be an open set such that Ω is bounded with Lipschitz boundary or
Ω = Rn. Then

Γ(L1) - lim
α→1−

|Dαf |(Ω) = |Df |(Ω)
for every f ∈ BV (Rn).
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The space BV 0(Rn) and the Hardy space

Imitating what we did before, we define

BV 0(Rn) =
&
f ∈ L1(Rn) : |D0f |(Rn) < +∞

'
,

where

|D0f |(Rn) = sup
(!

Rn

f div0ϕ dx : ϕ ∈ C∞
c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1

)
.

Here div0 is the dual operator of ∇0 = I1∇ = R, the Riesz transform

Rf(x) = µn,0

!

Rn

(f(y)− f(x))(y − x)

|y − x|n+1
dy, x ∈ Rn,

(in the principal value sense).

We can prove that BV 0(Rn) = H1(Rn), where

H1(Rn) = {f ∈ L1(Rn) : Rf ∈ L1(Rn;Rn)}

is the (real) Hardy space, with D0f = Rf L n as measures for f ∈ BV 0(Rn).
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Asymptotics as α → 0+

Theorem (Maz'ya-Shaposhnikova, 2002)

Let p ∈ [1,+∞). If f ∈
+

α∈(0,1) W
α,p(Rn), then

lim
α→0+

α [f ]pWα,p(Rn) = cn,p‖f‖Lp(Rn).

Now it is important to observe that µn,α → µn,0 as α → 0+ (no rescaling!).

Theorem (Bruè-Calzi-Comi-S., in preparation)

Let p ∈ (1,+∞). If f ∈
+

α∈(0,1) W
α,p(Rn), then

lim
α→0+

‖∇αf −Rf‖Lp(Rn;Rn) = 0.

If f ∈ H1(Rn) ∩
+

α∈(0,1) W
α,1(Rn), then (actually, with H1 norm)

lim
α→0+

‖∇αf −Rf‖L1(Rn;Rn) = 0.

If f ∈
+

α∈(0,1) W
α,1(Rn), then

lim
α→0+

α

!

Rn

|∇αf(x)| dx = nωnµn,0

,,,,
!

Rn

f(x) dx

,,,,.
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Fractional interpolation inequalities

We prove ∇α → R strongly as α → 0+ via fractional interpolation inequalities.

Theorem (Bruè-Calzi-Comi-S., in preparation)

Let α ∈ (0, 1]. There exists cn,α > 0 such that

|Dβf |(Rn) ≤ cn,α‖f‖
α−β
α

H1(Rn) |D
αf |(Rn)

β
α

for all β ∈ [0,α] and all f ∈ H1(Rn) ∩BV α(Rn).

Theorem (Bruè-Calzi-Comi-S., in preparation)

Let p ∈ (1,+∞). There exists cn,p > 0 such that

‖∇βf‖Lp(Rn;Rn) ≤ cn,p‖∇γf‖
α−β
α−γ

Lp(Rn;Rn) ‖∇
αf‖

β−γ
α−γ

Lp(Rn;Rn)

for all 0 ≤ γ ≤ β ≤ α ≤ 1 and all f ∈ Sα,p(Rn). There exists cn > 0 such that

‖∇βf‖H1(Rn;Rn) ≤ cn‖∇γf‖
α−β
α−γ

H1(Rn;Rn) ‖∇
αf‖

β−γ
α−γ

H1(Rn;Rn)

for all 0 ≤ γ ≤ β ≤ α ≤ 1 and all f ∈ HSα,1(Rn) (i.e., f ∈ H1 and ∇αf ∈ H1).
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Open problems and research directions [1/2]

About sets and perimeter. With the distributional approach to fractional variation,
many research directions are interesting.

⊲ We proved that Wα,1(Rn) ⊂ BV α(Rn) strictly only at the level of functions. Is
there χE ∈ BV α(Rn) \Wα,1(Rn) for some measurable set E ⊂ Rn?

⊲ We know that blow-ups exist and have constant fractional normal. Can we
characterise them more precisely? Are they unique (in some cases)?

⊲ Minimal surfaces for Pα are widely studied. What about minimal surfaces for the
fractional variation? Can we perform calibrations?

⊲ Isoperimetric sets for Pα are balls (also in a quantitative sense). Are balls
isoperimetric sets for the fractional variation?
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Open problems and research directions [2/2]

About interpolation. Fractional interpolation inequalities may be derived from
real/complex Interpolation Theory.

⊲ What is the real interpolation space between BV (Rn) and H1(Rn)? Note that

(H1(Rn), BV (Rn))α,p ⊂ (L1(Rn), BV (Rn))α,p = Bα
1,p(Rn) ⊃ Wα,1(Rn)

and that Bα
1,1(Rn) = Wα,1(Rn).

⊲ What is the complex interp. space between BV (Rn) and H1(Rn)? Note that

(H1(Rn), BV (Rn))α,1 ⊂ (H1(Rn), BV (Rn))[α] ⊂ (H1(Rn), BV (Rn))α,∞

∩ ∩
Wα,1(Rn) ⊊ BV α(Rn) ⊊ Bα

1,∞(Rn)

(with the second inclusion strict for all n ≥ 2).

About the general theory. What is the ``right'' definition of BV α on a general open
set Ω ⊂ Rn? We would like to keep integration by parts, but what is the role of ∂Ω?
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Thank you for your attention!
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