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Fractional derivative: three famous examples

Around 1675 Newton and Leibniz discovered Calculus. Somewhat surprisingly, the

first appearance of the concept of a fractional derivative is found in a letter written
to De ('Hopital by Leibniz in 1695!

Let us recall the three most famous fractional derivatives:
d*z™  T(m+1)

Leibniz-Lacroix (1819):

dx® F'm—a+1) )
: S 1 d [t f(r)
i B820- | . RLpa _ a
Riemann-Liouville (1832-1847) DS f(t) (i —a)di /a =)o dr

. Cpa N 1 /t f'(7)
Caputo (196%). “Dg f(t) = Ti—a) ), Gorp dr.
Some observations:

e they are defined just for functions of one variable;
e only Caputo's derivative kills constants;
o Caputo's derivative requires f to be differentiable!

Question: What about fractional gradient? Can we just take (D>, ..., D*")?

Be careful: the “coordinate approach” gives an operator not invariant by rotations!
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Silhavy's approach: invariance properties

Recently, éilhavg proposed that a “good" fractional operator should satisfy:

e invariance with respect to translations and rotations;
e a-homogeneity for some a € (0,1);
e mild continuity on suitable test space, eg. C2° or Schwartz's space ..

ldea behind: fractional operators should have a physical meaning!
For f € C(R™) and ¢ € C°(R™; R™), we consider

Vaf(l‘> = /n (f(y) — f(x))(y — 'T) d

y— et

r € R"”,

and

e - (p(y) —p(2) - (y — ) n
divio(z) == tn,a /n = g et dy, xeR"
Theorem (Silhavy, 2020)

V* and div* are determined (up to mult. const.) by the three requirements above.
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A little bit of literature

The operator V* = VI, _, has in fact a long story;

° Horvéth, 1959 (earliest reference up to knowledge);
e implicitly mentioned in Nikol'ski-Sobolev, 196 1;
e non-local continuum mechanics by Edelen-Green-Laws, 1971

e non-local porous medium equation Caffarelli-Soria-Vazquez, 2011-13, and
Biler-Imbert-Karch, 2015;

o fractional PDE theory and “geometric" inequalities by Shieh-Spector,
Ponce-Spector, Schikorra-Spector-Van Schaftingen, all after 2015,

o distributional approach by Silhavy, 2020,
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Duality, fractional Laplacian and Riesz transform

The operators V* and div* are dual, in the sense that
fdv¥pdr = —/ p-Vfdz

n

R’V‘L
for all f € C°(R™) and p € C°(R™; R™).

a+p

The operators V© and div? satisfy — div?vVe = (-=A) 2.

Iau(aj): ( 2 ) /R U(y)

2030 (§) Jro |2 —y|m—e
be the fractional Riesz potential of u € C2°(R™; R™), then

If we let

Vef=5L_.Vf, divip = I, dive.
Integrability: V£ € L1(R™) N L>=(R") and divtp € L*(R™;R™) N L>°(R™; R").
Relax: V* and div™ are well posed also for Lip_-regular test functions.
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Fractional variation and the space BV*(R")

We define
BVYR") = {f € L'(R") : |D*f|(R") < +o0},
where

|D* f|(R™) = sup{ fdiv¥pdr : ¢ € C°(R™; R™), llll oo (mr; RA) < 1}.
Rn

In perfect analogy with the classical BV framework:

e BV“(R™) is a Banach space and its norm is [s¢. wrt. L!-convergence;
e C°°(R") N BV*(R™) and C°(R™) are dense subspaces of BV *(R");
e given f € L}(R"), f € BVY(R") < 3ID“f € M(R";R") such that

/fdiv"‘godx:—/ p-dD“f
RYL n

for any ¢ € Lip, (R™; R™);
e unif. bounded seq. in BV*(R™) admit limit points in L (R™) wrt. L} -conv;

e for n > 2 we have BV*(R") C L7-= (R™) (Gagliardo-Nirenberg-Sobolev).
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Fractional distributional Sobolev spaces and Bessel potential spaces
For p € [1,400], we define the distributional fractional Sobolev space
SUP(R™) :={f € LP(R") : IV*f € LP(R™;R™)}.

Here Vof € LL_(R™;R") is the weak fractional gradient of f € LP(R™):

loc
/ fdv*odr = —/ 0-Vefdx forallp € CX(R™;R").
We naturally have S (R™) C BV*(R") with
feSYRY) « |Dfl< L, D*f =Vf2L"

We are also able to prove that BV*(R™) \ S} (R") # @.
For p € (1, 400), we prove that S*P(R™) = L*P(R™), where

LoP(R™) = {f € S(R") : (I — A)# f € LP(R™)}

is the Bessel potential space.
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Fractional Sobolev spaces and fractional operators

For p € [1,4+00) and a € (0, 1), we let

WeP(R") = {f € LP(R") : Wa »@®") / / |x - y|n+pa d:r dy < —I—OO}

The fractional perimeter in an open set @ C R™ of a measurable set E C R™ is

Pa(E,Q):/Q i |XE'( ) diﬂdy+2/ /n\Q ‘XE ( )|d$dy

Ix—yl'”“ Iw—y|”+a
If Q= R™, then PQ(E; Rn) = PQ(E) = [XE]WQ,I(]RTL).
Notice that we have the extension V: W*(R") — L!(R";R"), since
IV FllLr@®n;ve) < pinsalflwerwny for all f € WeH(R™).
We thus have W 1(R™) ¢ S*1(R") with f € W*Y(R") = D*f = V*f.£™.
Since W (R™) is closed wrt. pointwise convergence, S*1(R?) \ W*H(R") # &
Remarkably, if 0 < 3 < a < 1 then BV*(R") ¢ WA L(R™).
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Sets of finite fractional Caccioppoli a-perimeter

In perfect analogy with the standard BV setting, we give the following definition:

Let a € (0,1) and E C R™ be a measurable set. For any open set 2 C R™, we let

ID%xl(@) = sup{ [ divpda s € CEVRY, lomaimn < 1]

E
be the fractional Caccioppoli a-perimeter of E in Q. If |D*xg|(Q) < +oo, then E
has finite fractional Caccioppoli c-perimeter in €.
Note that E C R™ has finite fractional Caccioppoli a-perimeter in Q if and only if
D*xg € M(£;R™) and

/ div*odr = —/ p-dD“xE

E Q

for all ¢ € C°(£;R™). Note also that | Dy g[(R) < tn.a Pa(E; Q).

Another story: we can define a fractional version of De Giorgi's reduced boundary
and blow-ups exist!
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Asymptotics as aw — 1~

Theorem (Maz'ya-Shaposhnikova & Davila, 2002)
Let p € [1,+00). If f € WLP(R™), then

lim (1 - a)[f]léva,p(w) = Cn,pHVfHZ[),p(Rn;Rn)-

a—1-

f f € BV(R"), then
im (1 —a)[flwern) = cna1|DfIR™).

a—1-

Now it is important to observe that

ntoa+1 1—
,una:2o‘7rffr( — )N ¢ asa—s1
’ F(T) Wn,

Theorem (Comi-S., 2019)
Let p € [1,+00). If f € WLP(R™), then
(H’Yli ||V04f - foLp(Rn;Rn) - 0
a—1
f f € BV(R™),then D*f — Df and |D*f| — |Df| as a — 1~ and moreover
im_|D=f|(R") = [Df|(R").
a—1
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I'-convergence as a — 1~

Theorem (Ambrosio-De Philippis-Martinazzi, 2011)
Let @ C R™ be a bounded open set with Lipschitz boundary. Then

(L

loc

)- M (1 — @) Pa(E; Q) = 2w,_1 P(E; Q)

a—1-

for every measurable set E c R™.

Theorem (Comi-S., 2019)

Let @ C R™ be a bounded open set with Lipschitz boundary. Then
F(Llloc) _Q[L”L |DaXE|(Q) = P(E§ Q)

for every measurable set E C R™.

Theorem (Comi-S, 2019)

Let @ c R™ be an open set such that Q is bounded with Lipschitz boundary or

Q =R". Then .
D(LY)- lm_[D*£1(Q) = |DfI()

for every f € BV(R™).
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The space BV°(R™) and the Hardy space

Imitating what we did before, we define
BV°(R™) = {f € L'(R") : |D°f|(R™) < +o0},
where
D°71®") = swp{ [ faodssp e CE@NRY, Iplumarian <1,

Here div® is the dual operator of VO = I;V = R, the Riesz transform

ly — [+

(in the principal value sense).

We can prove that BVO(R") = H!(R"), where
H'(R") = {f € L\R") : Rf € L (R™;R™))
is the (real) Hardy space, with D°f = Rf ™ as measures for f € BVY(R™).
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Asymptotics as a — 07

Theorem (Maz'ya-Shaposhnikova, 2002)
Letpe [1,4+00). If f € Uae(m) WeP(R™), then

a[_l>rY01+Oé[f]Wap(Rn) Cnpll fll e @ny-

Now it is important to observe that i, o — pn,0 @S a — 01 (no rescaling!).

Theorem (Brue-Calzi-Comi-S,, in preparation)
Let p € (1,+00). f f € Uneo,1) W*P(R™), then

lm VO‘ _R P n. RN :0
a_‘>0+ [V f fllzr@nirmy
If f € H'(R™) NUue(00) W' (R™), then (actually, with H' norm)
m VO{ _R 1 n. RN :O
a_|>0+ Ve f fllor@®err)

If f € Unego.) WO (R™), then
lim a/ [V f(x)| dz = nwnpin,o

a—0

f(x) dx
R
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Fractional interpolation inequalities
We prove V¢ — R strongly as o — 07 via fractional interpolation inequalities.

Theorem (Brug-Calzi-Comi-S, in preparation)
Let o € (0,1]. There exists ¢, o > 0 such that

a—B
ID?FIR™) < el fll g oy 1D FI(R™)

forall 8 € [0,a] and all f € H'(R™) N BV*(R").

B
o

Theorem (Brue-Calzi-Comi-S., in preparation)
Let p € (1,400). There exists ¢, , > 0 Such that

a—B
Hvﬁf”Ll’ R™; R™) < Canv f”Lp R7; R™) HvafHLp(Rn R™)
foralo<y<pB<a<landal f e S*P(R"). If v =0, then
8 a=p o s
IVEflle®nirey < enpllf Il 5@y IVEFI| Ep e Ry
foralo<pB<a<landal f € S*P(R").
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Open problems and research directions

About sets and perimeter.

Is there xp € BV*(R") \ W*1(R")?

o Can one characterise blow-ups? Are they unique?
Are balls isoperimetric sets?

What about minimal surfaces?

About interpolation.
o What is the real interpolation space between BV (R™) and H*(R™)? Note that
(H'(R"™), BV(R"))p.o C (L'(R"), BV(R"))p,o = Bf,(R") D> WH(R")
and that Bf' | (R") = W' (R™).
e Is BV*(R") the complex interpolation space between BV (R™) and H' (R™)?

About the general theory. What is the “right" definition of BV on an open set?

Wg{w {mg{owv dltilion!
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