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No paradoxes without utility

Around 1650 Newton and Leibniz discovered Calculus and nowadays derivative is a
basic tool of any mathematician.

Somewhat surprisingly, the first appearance of the concept of a fractional
derivative is found in a letter written to De l'Hôpital by Leibniz in 1695!

What is the ``half derivative'' of x? It's
d

1
2x

dx
1
2

= c
√
x (with c = 2√

π
by Lacroix, 1819).

Leibniz's answer to De L'Hôpital, 30 September 1695:

``Il y a de l'apparence qu'on tirera un jour des consequences bien utiles de ces
paradoxes, car il n'y a gueres de paradoxes sans utilité.''

``This is an apparent paradox from which, one day, useful consequences will be
drawn, since there are no paradoxes without utility.''
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Three famous examples

Let us recall the three most famous fractional derivatives:

Lacroix (1819):
dαxm

dxα
=

Γ(m+ 1)

Γ(m− α+ 1)
xm−α

Riemann-Liouville (1832-1847): RLDα
a f(t) =

1

Γ(1− α)

d

dt

 t

a

f(τ)

(t− τ)α
dτ

Caputo (1967): CDα
a f(t) =

1

Γ(1− α)

 t

a

f ′(τ)

(t− τ)α
dτ.

Some observations:

• they are defined just for functions of one variable;
• only Caputo's derivative kills constants;
• Caputo's derivative requires f to be differentiable!

Question: What about fractional gradient? Can we just take

Dα,1, . . . , Dα,n


?

Be careful: the ``coordinate approach'' gives an operator not invariant by rotations!
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v

Silhav
/

y's approach: invariance properties

Recently,
v

Silhav
/
y proposed that a ``good'' fractional operator should satisfy:

• invariance with respect to translations and rotations;
• α-homogeneity for some α ∈ (0, 1);
• mild continuity on suitable test space, e.g. C∞

c or Schwartz's space S .

Idea behind: fractional operators should have a physical meaning!

For f ∈ C∞
c (Rn) and ϕ ∈ C∞

c (Rn;Rn), we consider

∇αf(x) := µn,α



Rn

(f(y)− f(x))(y − x)

|y − x|n+α+1
dy, x ∈ Rn,

and

divαϕ(x) := µn,α



Rn

(ϕ(y)− ϕ(x)) · (y − x)

|y − x|n+α+1
dy, x ∈ Rn.

Theorem (
v

Silhav
/
y, 2018)

∇α and divα are determined (up to mult. const.) by the three requirements above.
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A little bit of literature

The operator ∇α ≡ ∇I1−α has in fact a long story:

• Horv
/
ath, 1959 (earliest reference up to knowledge);

• implicitly mentioned in Nikol’ski-Sobolev, 1961;
• non-local continuum mechanics by Edelen-Green-Laws, 1971;
• non-local porous medium equation Caffarelli-Soria-Vazquez, 2011-13, and

Biler-Imbert-Karch, 2015;
• fractional PDE theory and ``geometric'' inequalities by Shieh-Spector,

Ponce-Spector, Schikorra-Spector-Van Schaftingen, all after 2015;

• distributional approach by
v

Silhav
/
y, 2018.
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Duality, fractional Laplacian and Riesz transform

The operators ∇α and divα are dual, in the sense that

Rn

f divαϕ dx = −


Rn

ϕ ·∇αf dx

for all f ∈ C∞
c (Rn) and ϕ ∈ C∞

c (Rn;Rn).

The operators ∇α and divβ satisfy − divβ∇α = (−∆)
α+β

2 .

If we let

Iαu(x) :=
Γ

n−α
2



2απ
n
2 Γ


α
2




Rn

u(y)

|x− y|n−α
dy

be the fractional Riesz potential of u ∈ C∞
c (Rn;Rm), then

∇αf = I1−α∇f, divαϕ = I1−α divϕ.

Integrability: ∇αf ∈ L1(Rn) ∩ L∞(Rn) and divαϕ ∈ L1(Rn;Rn) ∩ L∞(Rn;Rn).

Relax: ∇α and divα are well posed also for Lipc-regular test functions.
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Leibniz's rules for ∇α and divα

For any f, g ∈ C∞
c (Rn), we have it holds

∇α(fg) = f∇αg + g∇αf +∇α
NL(f, g),

where

∇α
NL(f, g)(x) := µn,α



Rn

(f(y)− f(x))(g(y)− g(x))(y − x)

|y − x|n+α+1
dy, x ∈ Rn.

For any f ∈ C∞
c (Rn) and ϕ ∈ C∞

c (Rn;Rn), we also have it holds

divα(fϕ) = f divαϕ+ ϕ ·∇αf + divαNL(f,ϕ),

where

divαNL(f,ϕ)(x) := µn,α



Rn

(f(y)− f(x))(ϕ(y)− ϕ(x)) · (y − x)

|y − x|n+α+1
dy, x ∈ Rn.

Although ∇α and divα have a strong non-local behaviour, they commute with
convolutions (by linearity). In addition, Leibniz's rules allow for approximation by
cut-off functions (by control on non-local terms).
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A fractional version of the Fundamental Theorem of Calculus

Let α ∈ (0, 1). If f ∈ C∞
c (Rn), then

f(y)− f(x) = µn,−α



Rn


z − x

|z − x|n+1−α
− z − y

|z − y|n+1−α


·∇αf(z) dz

for any x, y ∈ Rn.

Some good news:
• we get L1-control on translations;
• we get L1-control on smoothed-by-convolution functions;
• we get compactness for sequences with uniformly bounded RHS.

Some bad news:
• left-hand integral is on the whole space (non-locality!);
• we cannot get local Poincaré inequality;
• we cannot get relative fractional isoperimetric inequality.
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Fractional variation and the space BV α(Rn)

We define
BV α(Rn) =


f ∈ L1(Rn) : |Dαf |(Rn) < +∞


,

where

|Dαf |(Rn) = sup


Rn

f divαϕ dx : ϕ ∈ C∞
c (Rn;Rn), ϕL∞(Rn;Rn) ≤ 1


.

In perfect analogy with the classical BV framework:

• BV α(Rn) is a Banach space and its norm is l.s.c. w.r.t. L1-convergence;
• C∞(Rn) ∩BV α(Rn) and C∞

c (Rn) are dense subspaces of BV α(Rn);
• given f ∈ L1(Rn), f ∈ BV α(Rn) ⇐⇒ ∃Dαf ∈ M(Rn;Rn) such that



Rn

f divαϕ dx = −


Rn

ϕ · dDαf

for any ϕ ∈ Lipc(R
n;Rn);

• unif. bounded seq. in BV α(Rn) admit limit points in L1(Rn) w.r.t. L1
loc-conv.;

• for n ≥ 2 we have BV α(Rn) ⊂ L
n

n−α (Rn) (Gagliardo-Nirenberg-Sobolev).
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Fractional distributional Sobolev spaces and Bessel potential spaces

For p ∈ [1,+∞], we define the distributional fractional Sobolev space

Sα,p(Rn) := {f ∈ Lp(Rn) : ∃∇αf ∈ Lp(Rn;Rn)}.

Here ∇αf ∈ L1
loc(R

n;Rn) is the weak fractional gradient of f ∈ Lp(Rn):



Rn

f divαϕ dx = −


Rn

ϕ ·∇αf dx for all ϕ ∈ C∞
c (Rn;Rn).

We naturally have Sα,1(Rn) ⊂ BV α(Rn) with

f ∈ Sα,1(Rn) ⇐⇒ |Dαf | ≪ L n, Dαf = ∇αf L n.

We are also able to prove that BV α(Rn) \ Sα,1(Rn) ∕= ∅.

For p ∈ (1,+∞), we prove that Sα,p(Rn) = Lα,p(Rn), where

Lα,p(Rn) = {f ∈ S(Rn) : (I −∆)
α
2 f ∈ Lp(Rn)}

is the Bessel potential space.
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Fractional Sobolev spaces and fractional operators

For p ∈ [1,+∞) and α ∈ (0, 1), we let

Wα,p(Rn) =


f ∈ Lp(Rn) : [f ]pWα,p(Rn) =



Rn



Rn

|f(x)− f(y)|p
|x− y|n+pα

dx dy < +∞

.

The fractional perimeter in an open set Ω ⊂ Rn of a measurable set E ⊂ Rn is

Pα(E;Ω) =



Ω



Ω

|χE(x)− χE(y)|
|x− y|n+α

dx dy + 2



Ω



Rn\Ω

|χE(x)− χE(y)|
|x− y|n+α

dx dy.

If Ω = Rn, then Pα(E;Rn) = Pα(E) = [χE ]Wα,1(Rn).

Notice that we have the extension ∇α : Wα,1(Rn) → L1(Rn;Rn), since
∇αfL1(Rn;Rn) ≤ µn,α[f ]Wα,1(Rn) for all f ∈ Wα,1(Rn).

We thus have Wα,1(Rn) ⊂ Sα,1(Rn) with f ∈ Wα,1(Rn) ⇒ Dαf = ∇αfL n.

Since Wα,1(Rn) is closed w.r.t. pointwise convergence, Sα,1(Rn) \Wα,1(Rn) ∕= ∅.

Remarkably, if 0 < β < α < 1 then BV α(Rn) ⊂ W β,1(Rn).
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Sets of finite fractional Caccioppoli α-perimeter

In perfect analogy with the standard BV setting, we give the following definition:

Let α ∈ (0, 1) and E ⊂ Rn be a measurable set. For any open set Ω ⊂ Rn, we let

|DαχE |(Ω) = sup


E

divαϕ dx : ϕ ∈ C∞
c (Ω;Rn), ϕL∞(Ω;Rn) ≤ 1



be the fractional Caccioppoli α-perimeter of E in Ω. If |DαχE |(Ω) < +∞, then E
has finite fractional Caccioppoli α-perimeter in Ω.

Note that E ⊂ Rn has finite fractional Caccioppoli α-perimeter in Ω if and only if
DαχE ∈ M(Ω;Rn) and 

E

divαϕ dx = −


Ω

ϕ · dDαχE

for all ϕ ∈ C∞
c (Ω;Rn).

Question: can we define a fractional version of De Giorgi's reduce boundary? YES!

12/23



Fractional reduced boundary

It is now natural to give the following definition:

Let E ⊂ Rn be a set with finite fractional Caccioppoli α-perimeter in Ω. A point
x ∈ Ω belongs to the fractional reduced boundary of E (inside Ω) if

x ∈ supp(DαχE) and ∃ lim
r→0

DαχE(Br(x))

|DαχE |(Br(x))
∈ Sn−1.

We thus let FαE be the fractional reduced boundary of E and define

ναE : Ω ∩ FαE → Sn−1, ναE(x) := lim
r→0

DαχE(Br(x))

|DαχE |(Br(x))
, x ∈ Ω ∩ FαE,

the inner unit fractional normal to E (inside Ω).

We thus have the following Gauss-Green formula

E

divαϕ dx = −


Ω∩FαE

ϕ · ναE d|DαχE |.

for all ϕ ∈ Lipc(Ω;R
n).
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Sets of finite fractional perimeter

If E ⊂ Rn satisfies Pα(E;Ω) < +∞, then

|DαχE |(Ω) ≤ µn,αPα(E;Ω)

and
DαχE = ναE |DαχE | = ∇αχE L n.

Moreover, if χE ∈ BV (Rn), then

∇αχE(x) =
µn,α

n+ α− 1



Rn

νE(y)

|y − x|n+α−1
d|DχE |(y)

for L n-a.e. x ∈ Rn.

Be careful! We have
Pα(E;Ω) < +∞ ⇒ L n(Ω ∩ FαE) > 0

including even the case χE ∈ BV (Rn). In other words, the non-local operator ∇α

produces a diffuse fractional boundary in the Wα,1 regime (⊂ Sα,1).

Example: E = (a, b) ⊂ R ⇒ FαE = R \


a+b
2


!
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Two examples: balls and halfspaces

For L n-a.e. x ∈ Rn, we have
∇αχB1(x) = − µn,α

n+ α− 1
gn,α(|x|)

x

|x| ,

where
gn,α(t) :=



∂B1

y1
|te1 − y|n+α−1

dH n−1(y) > 0, for any t ≥ 0,

which means ναB1
(x) = −x/|x| for any x ∕= 0 and FαB1 = Rn \ {0}.

For the halfspace H+
ν = {y · ν ≥ 0}, if x · ν ∕= 0 then

∇αχH+
ν
(x) =

2α−1Γ

α
2


√
π Γ


1−α
2

 1

|x · ν|α ν.

In particular, FαH+
ν = Rn and να

H+
ν
≡ ν .
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Existence of blow-ups and coarea inequality

Let Tan(E, x) be the set of all tangent sets of E at x, i.e. the set of all limit points
in L1

loc(R
n)-topology of the family

E − x

r
: r > 0


as r → 0.

Theorem (Comi-S., 2018)

If E has locally finite fractional Caccioppoli α-perimeter in Rn, then Tan(E, x) ∕= ∅
for all x ∈ FαE . Moreover, if F ∈ Tan(E, x), then F has locally finite fractional
Caccioppoli α-perimeter in Rn and ναF (y) = ναE(x) for |DαχF |-a.e. y ∈ FαF .

What is missing: density estimates from below and we need coarea fromula.

Theorem (Comi-S., 2018)

If f ∈ BV α(Rn) is such that

R |Dαχ{f>t}|(Rn) dt < +∞, then

Dαf =



R
Dαχ{f>t} dt, |Dαf | ≤



R
|Dαχ{f>t}| dt.

Bad news: there exist f ∈ BV α(Rn) such that

R |Dαχ{f>t}|(Rn) dt = +∞!
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Asymptotics as α → 1−

Theorem (Maz'ya-Shaposhnikova & Dávila, 2002)

Let p ∈ [1,+∞). If f ∈ W 1,p(Rn), then

lim
α→1−

(1− α)[f ]pWα,p(Rn) = cn,p∇fpLp(Rn;Rn).

If f ∈ BV (Rn), then
lim

α→1−
(1− α)[f ]Wα,1(Rn) = cn,1|Df |(Rn).

Now it is important to observe that

µn,α = 2απ−n
2
Γ(n+α+1

2 )
Γ( 1−α

2 )
∼ 1− α

ωn
as α → 1−.

Theorem (Comi-S., 2019)

Let p ∈ [1,+∞). If f ∈ W 1,p(Rn), then

lim
α→1−

∇αf −∇fLp(Rn;Rn) = 0.

If f ∈ BV (Rn), then Dαf ⇀ Df and |Dαf | ⇀ |Df | as α → 1− and moreover

lim
α→1−

|Dαf |(Rn) = |Df |(Rn).
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Γ-convergence as α → 1−

Theorem (Ambrosio-De Philippis-Martinazzi, 2011)

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Then

Γ(L1
loc) - lim

α→1−
(1− α)Pα(E;Ω) = 2ωn−1P (E;Ω)

for every measurable set E ⊂ Rn.

Theorem (Comi-S., 2019)

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. Then

Γ(L1
loc) - lim

α→1−
|DαχE |(Ω) = P (E;Ω)

for every measurable set E ⊂ Rn.

Theorem (Comi-S., 2019)

Let Ω ⊂ Rn be an open set such that Ω is bounded with Lipschitz boundary or
Ω = Rn. Then

Γ(L1) - lim
α→1−

|Dαf |(Ω) = |Df |(Ω)
for every f ∈ BV (Rn).
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The space BV 0(Rn) and the Hardy space

Imitating what we did before, we define

BV 0(Rn) =

f ∈ L1(Rn) : |D0f |(Rn) < +∞


,

where

|D0f |(Rn) = sup


Rn

f div0ϕ dx : ϕ ∈ C∞
c (Rn;Rn), ϕL∞(Rn;Rn) ≤ 1


.

Here div0 is the dual operator of ∇0 = I1∇ = R, the Riesz transform

Rf(x) = µn,0



Rn

(f(y)− f(x))(y − x)

|y − x|n+1
dy, x ∈ Rn,

(in the principal value sense).

We can prove that BV 0(Rn) = H1(Rn), where

H1(Rn) = {f ∈ L1(Rn) : Rf ∈ L1(Rn;Rn)}

is the (real) Hardy space, with D0f = Rf L n as measures for f ∈ BV 0(Rn).
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Asymptotics as α → 0+

Theorem (Maz'ya-Shaposhnikova, 2002)

Let p ∈ [1,+∞). If f ∈


α∈(0,1) W
α,p(Rn), then

lim
α→0+

α [f ]pWα,p(Rn) = cn,pfLp(Rn).

Now it is important to observe that µn,α → µn,0 as α → 0+ (no rescaling!).

Theorem (Bruè-Calzi-Comi-S., in preparation)

Let p ∈ (1,+∞). If f ∈


α∈(0,1) W
α,p(Rn), then

lim
α→0+

∇αf −RfLp(Rn;Rn) = 0.

If f ∈ H1(Rn) ∩


α∈(0,1) W
α,1(Rn), then (actually, with H1 norm)

lim
α→0+

∇αf −RfL1(Rn;Rn) = 0.

If f ∈


α∈(0,1) W
α,1(Rn), then

lim
α→0+

α



Rn

|∇αf(x)| dx = nωnµn,0




Rn

f(x) dx

.
20/23



Fractional interpolation inequalities

We prove ∇α → R strongly as α → 0+ via fractional interpolation inequalities.

Theorem (Bruè-Calzi-Comi-S., in preparation)

Let α ∈ (0, 1]. There exists cn,α > 0 such that

|Dβf |(Rn) ≤ cn,αf
α−β
α

H1(Rn) |D
αf |(Rn)

β
α

for all β ∈ [0,α] and all f ∈ H1(Rn) ∩BV α(Rn).

Theorem (Bruè-Calzi-Comi-S., in preparation)

Let p ∈ (1,+∞). There exists cn,p > 0 such that

∇βfLp(Rn;Rn) ≤ cn,p∇γf
α−β
α−γ

Lp(Rn;Rn) ∇
αf

β−γ
α−γ

Lp(Rn;Rn)

for all 0 ≤ γ ≤ β ≤ α ≤ 1 and all f ∈ Sα,p(Rn). If γ = 0, then

∇βfLp(Rn;Rn) ≤ cn,pf
α−β
α

Lp(Rn) ∇
αf

β
α

Lp(Rn;Rn)

for all 0 ≤ β ≤ α ≤ 1 and all f ∈ Sα,p(Rn).
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Open problems and research directions

About sets and perimeter.

• Is there χE ∈ BV α(Rn) \Wα,1(Rn)?
• Can one characterise blow-ups? Are they unique?
• What about minimal surfaces?
• Are balls isoperimetric sets?

About interpolation.

• What is the real interpolation space between BV (Rn) and H1(Rn)? Note that
(H1(Rn), BV (Rn))p,α ⊂ (L1(Rn), BV (Rn))p,α = Bα

1,p(Rn) ⊃ Wα,1(Rn)

and that Bα
1,1(Rn) = Wα,1(Rn).

• Is BV α(Rn) the complex interpolation space between BV (Rn) and H1(Rn)?

About the general theory. What is the ``right'' definition of BV α on an open set?
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From ``The Emperor's Club'' (2002):

Great teachers have little external history to record. Their lives go
over into other lives. These men and women are pillars in the intimate
structure of our schools. They are more essential than their stones
and beams, and they will continue to be a kindling force and a
revealing power in our lives.

Thank you for your attention!
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