A distributional approach to fractional Sobolev spaces and fractional variation

Giorgio Stefani

Scuola Normale Superiore

Basel, 24 April 2019

G. E. Comi and G. Stefani, "A distributional approach to fractional Sobolev spaces and fractional variation: existence of blow-up", J. Funct. Anal. (2018), arXiv:1809.08575.

G. E. Comi and G. Stefani, "A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics I", in preparation.

No paradoxes without utility

Around 1650 Newton and Leibniz discovered Calculus and nowadays derivative is a basic tool of any mathematician.

Somewhat surprisingly, the first appearance of the concept of a fractional derivative is found in a letter written to de l'Hôpital by Leibniz in 1695!

What is the "half derivative" of
$$x$$
? It's $\frac{d^{\frac{1}{2}}x}{dx^{\frac{1}{2}}} = c\sqrt{x}$ (with $c = \frac{2}{\sqrt{\pi}}$ by Lacroix, 1819).

Leibniz's answer to De L'Hôpital, 30 September 1695:

"Il y a de l'apparence qu'on tirera un jour des consequences bien utiles de ces paradoxes, car il n'y a gueres de paradoxes sans utilité."

"This is an apparent paradox from which, one day, useful consequences will be drawn, since there are no paradoxes without utility."

Three famous examples

Let us recall the three most famous fractional derivatives:

Lacroix (1819):
$$\frac{d^{\alpha}x^m}{dx^{\alpha}} = \frac{\Gamma(m+1)}{\Gamma(m-\alpha+1)}x^{m-\alpha}$$

Riemann-Liouville (1832-1847): $^{RL}D_a^{\alpha}f(t) = \frac{1}{\Gamma(1-\alpha)}\frac{d}{dt}\int_a^t \frac{f(\tau)}{(t-\tau)^{\alpha}}d\tau$

Caputo (1967):
$$^{C}D_{a}^{\alpha}f(t) = \frac{1}{\Gamma(1-\alpha)}\int_{a}^{t}\frac{f'(\tau)}{(t-\tau)^{\alpha}}\,d\tau.$$

Some observations:

- they are defined just for functions of one variable;
- only Caputo's derivative kills constants;
- Caputo's derivative requires f to be differentiable!

<u>Question</u>: What about fractional gradient? Can we just take $(D^{\alpha,1},\ldots,D^{\alpha,n})$?

Be careful: the "coordinate approach" gives an operator not invariant by rotations!

Šilhavý's approach: invariance properties

Recently, Silhavy proposed that a "good" fractional operator should satisfy:

- invariance with respect to translations and rotations;
- α -homogeneity for some $\alpha \in (0,1)$;
- mild continuity on suitable test space, e.g. C_c^{∞} or Schwartz's space \mathscr{S} .

Idea behind: fractional operators should have a physical meaning!

For $f \in C_c^{\infty}(\mathbb{R}^n)$ and $\varphi \in C_c^{\infty}(\mathbb{R}^n; \mathbb{R}^n)$, we consider

$$\nabla^{\alpha} f(x) := \mu_{n,\alpha} \int_{\mathbb{R}^n} \frac{(f(y) - f(x))(y - x)}{|y - x|^{n + \alpha + 1}} \, dy,$$

and

$$\operatorname{div}^{\alpha}\varphi(x) := \mu_{n,\alpha} \int_{\mathbb{R}^n} \frac{(\varphi(y) - \varphi(x)) \cdot (y - x)}{|y - x|^{n + \alpha + 1}} \, dy.$$

Theorem (Šilhavý, 2018)

Up to mult. const., $abla^{lpha}$ and div lpha are determined by the three requirements above.

Duality, fractional Laplacian and Riesz transform

The operators ∇^{α} and div^{α} are dual, in the sense that

$$\int_{\mathbb{R}^n} f \, \operatorname{div}^{\alpha} \varphi \, dx = - \int_{\mathbb{R}^n} \varphi \cdot \nabla^{\alpha} f \, dx$$

for all $f \in C_c^{\infty}(\mathbb{R}^n)$ and $\varphi \in C_c^{\infty}(\mathbb{R}^n; \mathbb{R}^n)$.

The operators $abla^{lpha}$ and ${\rm div}^{lpha}$ satisfy $-{\rm div}^{lpha}
abla^{lpha} = (-\Delta)^{lpha}.$

If we let

$$I_{\alpha}u(x) := \frac{\Gamma\left(\frac{n-\alpha}{2}\right)}{2^{\alpha}\pi^{\frac{n}{2}}\Gamma\left(\frac{\alpha}{2}\right)} \int_{\mathbb{R}^n} \frac{u(y)}{|x-y|^{n-\alpha}} \, dy$$

be the fractional Riesz potential of $u \in C_c^{\infty}(\mathbb{R}^n; \mathbb{R}^m)$, then

$$abla^{\alpha} f = I_{1-\alpha} \nabla f, \qquad \operatorname{div}^{\alpha} \varphi = I_{1-\alpha} \operatorname{div} \varphi.$$

Consequently, $\nabla^{\alpha} f \in L^{1}(\mathbb{R}^{n}) \cap L^{\infty}(\mathbb{R}^{n})$ and $\operatorname{div}^{\alpha} \varphi \in L^{1}(\mathbb{R}^{n};\mathbb{R}^{n}) \cap L^{\infty}(\mathbb{R}^{n};\mathbb{R}^{n})$. <u>Relax</u>: ∇^{α} and $\operatorname{div}^{\alpha}$ are well posed also for Lip_c-regular test functions. The operator $abla^{lpha} \equiv
abla I_{1-lpha}$ has in fact a long story:

- Horvath, 1959 (earliest reference up to knowledge);
- implicitly mentioned in Nikol'ski-Sobolev, 1961;
- non-local continuum mechanics by Edelen-Green-Laws, 1971;
- non-local porous medium equation Caffarelli-Soria-Vazquez, 2011-13, and Biler-Imbert-Karch, 2015;
- fractional PDE theory and "geometric" inequalities by Shieh-Spector, Ponce-Spector, Schikorra-Spector-Van Schaftingen all after 2015;
- distributional approach by Silhavy, 2018.

Leibniz's rules for $abla^{lpha}$ and ${\rm div}^{lpha}$

For any $f, g \in C_c^{\infty}(\mathbb{R}^n)$, we have it holds

$$\nabla^{\alpha}(fg) = f \nabla^{\alpha}g + g \nabla^{\alpha}f + \nabla^{\alpha}_{\mathrm{NL}}(f,g),$$

where

$$\nabla^{\alpha}_{\mathrm{NL}}(f,g)(x):=\mu_{n,\alpha}\int_{\mathbb{R}^n}\frac{(f(y)-f(x))(g(y)-g(x))(y-x)}{|y-x|^{n+\alpha+1}}\,dy.$$

For any $f \in C_c^{\infty}(\mathbb{R}^n)$ and $\varphi \in C_c^{\infty}(\mathbb{R}^n;\mathbb{R}^n)$, we also have it holds

$$\operatorname{div}^{\alpha}(f\varphi) = f\operatorname{div}^{\alpha}\varphi + \varphi\cdot\nabla^{\alpha}f + \operatorname{div}_{\operatorname{NL}}^{\alpha}(f,\varphi),$$

where

$$\operatorname{div}_{\operatorname{NL}}^{\alpha}(f,\varphi)(x) := \mu_{n,\alpha} \int_{\mathbb{R}^n} \frac{(f(y) - f(x))(\varphi(y) - \varphi(x)) \cdot (y - x)}{|y - x|^{n + \alpha + 1}} \, dy.$$

The operators ∇^{α}_{NL} and div $^{\alpha}_{NL}$ have a strong non-local behaviour.

The operators ∇^{α} and div^{α} commute with convolutions. Leibniz's rules allow for cut-off approximation arguments (careful control on non-local terms!).

A fractional version of the Fundamental Theorem of Calculus

Theorem (Comi-S., 2018)

Let $\alpha \in (0,1).$ If $f \in C^\infty_c(\mathbb{R}^n),$ then

$$f(y) - f(x) = \mu_{n,-\alpha} \int_{\mathbb{R}^n} \left(\frac{z - x}{|z - x|^{n+1-\alpha}} - \frac{z - y}{|z - y|^{n+1-\alpha}} \right) \cdot \nabla^{\alpha} f(z) \, dz$$

for any $x, y \in \mathbb{R}^n$.

Some observations:

- we get L^1 -control on translations;
- we get L¹-control on smoothed-by-convolution functions;
- we get compactness of unif. bounded sequence in $BV^{\alpha}(\mathbb{R}^n)$.

Some "bad" news:

- left-hand integral is on the whole space (non-locality!);
- we cannot get local Poincaré inequality;
- we cannot get relative fractional isoperimetric inequality.

Fractional Sobolev spaces and fractional operators

For $p \in [1, +\infty)$ and $\alpha \in (0, 1)$, we let

$$W^{\alpha,p}(\mathbb{R}^n) = \left\{ u \in L^p(\mathbb{R}^n) : [u]^p_{W^{\alpha,p}(\mathbb{R}^n)} = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|u(x) - u(y)|^p}{|x - y|^{n + p\alpha}} \, dx \, dy < +\infty \right\}.$$

A measurable set $E \subset \mathbb{R}^n$ has finite fractional perimeter if

$$P_{\alpha}(E) = [\chi_E]_{W^{\alpha,1}(\mathbb{R}^n)} = 2 \int_{\mathbb{R}^n \setminus E} \int_E \frac{1}{|x - y|^{n + \alpha}} \, dx \, dy < +\infty$$

and we define its fractional perimeter in an open set $\Omega \subset \mathbb{R}^n$ as

$$P_{\alpha}(E;\Omega) = \int_{\Omega} \int_{\Omega} \frac{|\chi_E(x) - \chi_E(y)|}{|x - y|^{n + \alpha}} \, dx \, dy + 2 \int_{\Omega} \int_{\mathbb{R}^n \setminus \Omega} \frac{|\chi_E(x) - \chi_E(y)|}{|x - y|^{n + \alpha}} \, dx \, dy.$$

Notice that we have the extension $\nabla^{\alpha} \colon W^{\alpha,1}(\mathbb{R}^n) \to L^1(\mathbb{R}^n;\mathbb{R}^n)$, since

$$\|\nabla^{\alpha}f\|_{L^{1}(\mathbb{R}^{n};\mathbb{R}^{n})} \leq \mu_{n,\alpha}[f]_{W^{\alpha,1}(\mathbb{R}^{n})} \quad \text{for all } f \in C^{\infty}_{c}(\mathbb{R}^{n}).$$

Analogously, we have the extension div^{α}: $W^{\alpha,1}(\mathbb{R}^n;\mathbb{R}^n) \to L^1(\mathbb{R}^n)$.

Fractional variation and the space $BV^{\alpha}(\mathbb{R}^n)$

We define

$$BV^{\alpha}(\mathbb{R}^n) = \big\{ f \in L^1(\mathbb{R}^n) : |D^{\alpha}f|(\mathbb{R}^n) < +\infty \big\},$$

where

$$|D^{\alpha}f|(\mathbb{R}^n) = \sup \biggl\{ \int_{\mathbb{R}^n} f \operatorname{div}^{\alpha} \varphi \, dx : \varphi \in C^{\infty}_c(\mathbb{R}^n;\mathbb{R}^n), \ \|\varphi\|_{L^{\infty}(\mathbb{R}^n;\mathbb{R}^n)} \leq 1 \biggr\}.$$

In perfect analogy with the classical BV framework:

for any $\varphi \in \operatorname{Lip}_{a}(\mathbb{R}^{n}; \mathbb{R}^{n})$;

- $BV^{\alpha}(\mathbb{R}^n)$ is a Banach space and its norm is l.s.c. w.r.t. L^1 -convergence;

- given f

•
$$C^{\infty}(\mathbb{R}^n) \cap BV^{\alpha}(\mathbb{R}^n)$$
 and $C^{\infty}_{c}(\mathbb{R}^n)$ are dense subspaces of $BV^{\alpha}(\mathbb{R}^n)$
over $f \in L^1(\mathbb{R}^n)$, $f \in BV^{\alpha}(\mathbb{R}^n)$ $\longrightarrow \exists D^{\alpha}f \in M(\mathbb{R}^n,\mathbb{R}^n)$ such that

•
$$C^{\infty}(\mathbb{R}^n) \cap BV^{\alpha}(\mathbb{R}^n)$$
 and $C^{\infty}_{c}(\mathbb{R}^n)$ are dense subspaces of $BV^{\alpha}(\mathbb{R}^n)$

$$C^{\infty}(\mathbb{R}^n) \cap BV^{\alpha}(\mathbb{R}^n)$$
 and $C^{\infty}_c(\mathbb{R}^n)$ are dense subspaces of $BV^{\alpha}(\mathbb{R}^n)$;

•
$$C^{\infty}(\mathbb{R}^n) \cap BV^{\alpha}(\mathbb{R}^n)$$
 and $C^{\infty}_c(\mathbb{R}^n)$ are dense subspaces of $BV^{\alpha}(\mathbb{R}^n)$

•
$$C^{\infty}(\mathbb{R}^n) \cap BV^{\alpha}(\mathbb{R}^n)$$
 and $C^{\infty}_c(\mathbb{R}^n)$ are dense subspaces of $BV^{\alpha}(\mathbb{R}^n)$

$$\in L^1(\mathbb{R}^n), f \in BV^{\alpha}(\mathbb{R}^n) \iff \exists D^{\alpha}f \in \mathcal{M}(\mathbb{R}^n;\mathbb{R}^n)$$
 such that

 $\int_{\mathbb{R}^n} f \operatorname{div}^{\alpha} \varphi \, dx = - \int_{\mathbb{R}^n} \varphi \cdot dD^{\alpha} f$

• unif. bounded seq. in $BV^{\alpha}(\mathbb{R}^n)$ admit limit points in $L^1(\mathbb{R}^n)$ w.r.t. L^1_{loc} -conv.; • for $n \geq 2$ we have $BV^{\alpha}(\mathbb{R}^n) \subset L^{\frac{n}{n-\alpha}}(\mathbb{R}^n)$ (Gagliardo-Nirenberg-Sobolev). $BV(\mathbb{R}^n) \subset W^{\alpha,1}(\mathbb{R}^n) \subset S^{\alpha,1}(\mathbb{R}^n) \subset BV^{\alpha}(\mathbb{R}^n) \subset W^{\beta,1}(\mathbb{R}^n)$

We know that $W^{\alpha,1}(\mathbb{R}^n) \subset BV^{\alpha}(\mathbb{R}^n)$ and $f \in W^{\alpha,1}(\mathbb{R}^n) \Rightarrow D^{\alpha}f = \nabla^{\alpha}f\mathscr{L}^n$. We define the distributional fractional Sobolev space

 $S^{\alpha,p}(\mathbb{R}^n) := \{ f \in L^p(\mathbb{R}^n) : \exists \nabla_w^\alpha f \in L^p(\mathbb{R}^n; \mathbb{R}^n) \}.$

Given $f \in BV^{\alpha}(\mathbb{R}^n)$, we have $f \in S^{\alpha,1}(\mathbb{R}^n) \iff |D^{\alpha}f| \ll \mathscr{L}^n$, in which case

$$D^{\alpha}f = \nabla^{\alpha}_{w}f \mathscr{L}^{n}.$$

We are able to prove that $BV^{\alpha}(\mathbb{R}^n) \setminus S^{\alpha,1}(\mathbb{R}^n) \neq \emptyset$.

Since $W^{\alpha,1}(\mathbb{R}^n)$ is closed w.r.t. pointwise conv., also $S^{\alpha,1}(\mathbb{R}^n) \setminus W^{\alpha,1}(\mathbb{R}^n) \neq \varnothing$.

If $f \in BV(\mathbb{R}^n)$ then $f \in BV^{\alpha}(\mathbb{R}^n)$, with

$$\nabla^{\alpha} f(x) = \frac{\mu_{n,\alpha}}{n+\alpha-1} \int_{\mathbb{R}^n} \frac{dDf(y)}{|y-x|^{n+\alpha-1}} = I_{1-\alpha} Df(x)$$

for \mathscr{L}^n -a.e. $x \in \mathbb{R}^n$.

Remarkably, if $0 < \beta < \alpha < 1$ then $BV^{\alpha}(\mathbb{R}^n) \subset W^{\beta,1}(\mathbb{R}^n)$.

Sets of finite fractional Caccioppoli α -perimeter

In perfect analogy with the standard BV setting, we give the following definition:

Let $\alpha \in (0,1)$ and $E \subset \mathbb{R}^n$ be a measurable set. For any open set $\Omega \subset \mathbb{R}^n$, we let

$$|D^{\alpha}\chi_{E}|(\Omega) = \sup \biggl\{ \int_{E} \operatorname{div}^{\alpha}\varphi \, dx: \varphi \in C^{\infty}_{c}(\Omega;\mathbb{R}^{n}), \ \|\varphi\|_{L^{\infty}(\Omega;\mathbb{R}^{n})} \leq 1 \biggr\}$$

be the fractional Caccioppoli α -perimeter of E in Ω . If $|D^{\alpha}\chi_{E}|(\Omega) < +\infty$, then E has finite fractional Caccioppoli α -perimeter in Ω .

Note that $E \subset \mathbb{R}^n$ has finite fractional Caccioppoli α -perimeter in Ω if and only if $D^{\alpha}\chi_E \in \mathcal{M}(\Omega; \mathbb{R}^n)$ and

$$\int_E {\rm div}^\alpha \varphi \, dx = -\int_\Omega \varphi \cdot dD^\alpha \chi_E$$

for all $\varphi \in C_c^{\infty}(\Omega; \mathbb{R}^n)$.

Question: can we define a fractional reduce boundary?

Fractional reduced boundary

It is now natural to give the following definition:

Let $E \subset \mathbb{R}^n$ be a set with finite fractional Caccioppoli α -perimeter in Ω . A point $x \in \Omega$ belongs to the fractional reduced boundary of E (inside Ω) if

$$x \in \operatorname{supp}(D^{\alpha}\chi_{E})$$
 and $\exists \lim_{r \to 0} \frac{D^{\alpha}\chi_{E}(B_{r}(x))}{|D^{\alpha}\chi_{E}|(B_{r}(x))|} \in \mathbb{S}^{n-1}.$

We thus let $\mathscr{F}^{\alpha}E$ be the fractional reduced boundary of E and define

$$\nu_E^\alpha\colon \Omega\cap\mathscr{F}^\alpha E\to\mathbb{S}^{n-1},\qquad \nu_E^\alpha(x):=\lim_{r\to 0}\frac{D^\alpha\chi_E(B_r(x))}{|D^\alpha\chi_E|(B_r(x))},\quad x\in\Omega\cap\mathscr{F}^\alpha E,$$

the inner unit fractional normal to E (inside Ω).

We thus have the following Gauss-Green formula

$$\int_E \mathrm{div}^\alpha \varphi \, dx = - \int_{\Omega \cap \mathscr{F}^\alpha E} \varphi \cdot \nu^\alpha_E \, d|D^\alpha \chi_E|.$$

for all $\varphi \in \operatorname{Lip}_{c}(\Omega; \mathbb{R}^{n})$.

Sets of finite fractional perimeter

If
$$E \subset \mathbb{R}^n$$
 satisfies $P_{\alpha}(E;\Omega) < +\infty$, then
 $|D^{\alpha}\chi_E|(\Omega) \le \mu_{n,\alpha}P_{\alpha}(E;\Omega)$ (strict inequality for $\Omega = \mathbb{R}^n$)

and

$$D^{\alpha}\chi_E = \nu_E^{\alpha} \left| D^{\alpha}\chi_E \right| = \nabla^{\alpha}\chi_E \mathscr{L}^n.$$

Moreover, if $\chi_E \in BV(\mathbb{R}^n)$, then

$$\nabla^{\alpha} \chi_E(x) = \frac{\mu_{n,\alpha}}{n+\alpha-1} \int_{\mathbb{R}^n} \frac{\nu_E(y)}{|y-x|^{n+\alpha-1}} \, d|D\chi_E|(y)$$

for \mathscr{L}^n -a.e. $x \in \mathbb{R}^n$.

Be careful! We have

$$P_{\alpha}(E;\Omega) < +\infty \Rightarrow \mathscr{L}^{n}(\Omega \cap \mathscr{F}^{\alpha}E) > 0$$

including even the case $\chi_E \in BV(\mathbb{R}^n)$. In other words, the non-local operator ∇^{α} produces a diffuse fractional boundary in the $W^{\alpha,1}$ regime ($\subset S^{\alpha,1}$). Example: $E = (a, b) \subset \mathbb{R} \Rightarrow \mathscr{F}^{\alpha}E = \mathbb{R} \setminus \left\{\frac{a+b}{2}\right\}!$

Two examples: balls and halfspaces

For \mathscr{L}^n -a.e. $x \in \mathbb{R}^n$, we have

$$\nabla^{\alpha}\chi_{B_1}(x) = -\frac{\mu_{n,\alpha}}{n+\alpha-1}g_{n,\alpha}(|x|)\frac{x}{|x|},$$

where

$$g_{n,\alpha}(t) := \int_{\partial B_1} \frac{y_1}{|t\mathbf{e}_1 - y|^{n+\alpha-1}} \, d\mathscr{H}^{n-1}(y) > 0, \quad \text{for any } t \ge 0,$$

which means $\nu_{B_1}^{\alpha}(x) = -x/|x|$ for any $x \neq 0$ and $\mathscr{F}^{\alpha}B_1 = \mathbb{R}^n \setminus \{0\}$.

For the halfspace $H^+_\nu=\{y\cdot\nu\geq 0\},$ if $x\cdot\nu\neq 0$ then

$$\nabla^{\alpha}\chi_{H_{\nu}^{+}}(x) = \frac{2^{\alpha-1}\Gamma\left(\frac{\alpha}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{1-\alpha}{2}\right)} \frac{1}{|x \cdot \nu|^{\alpha}}\nu.$$

In particular, $\mathscr{F}^{\alpha}H^+_{\nu}=\mathbb{R}^n$ and $\nu^{\alpha}_{H^+_{\nu}}\equiv \nu$.

Density estimates

Thanks to the invariance properties, we get

$$D^{\alpha}\chi_{\frac{E-x}{r}} = \frac{1}{r^{n-\alpha}}(I_{x,r})_{\#}D^{\alpha}\chi_{E},$$

where $I_{x,r}(y) = (y - x)/r$. We are thus led to the following result.

Theorem (Comi-S., 2018)

There exist $A_{n,\alpha}, B_{n,\alpha} > 0$ as follows. If $E \subset \mathbb{R}^n$ has locally finite fractional Caccioppoli α -perimeter in \mathbb{R}^n , then for any $x \in \mathscr{F}^{\alpha}E$ there exists $r_x > 0$ such that

$$|D^{\alpha}\chi_{E}|(B_{r}(x)) \leq A_{n,\alpha}r^{n-\alpha}, \ |D^{\alpha}\chi_{E\cap B_{r}(x)}|(\mathbb{R}^{n}) \leq B_{n,\alpha}r^{n-\alpha}$$

for all $r \in (0, r_x)$.

By a standard covering arguments, we thus get that

$$|D^{\alpha}\chi_{E}| \leq C_{n,\alpha}\mathscr{H}^{n-\alpha} \, \bigsqcup \mathscr{F}^{\alpha} E$$

and consequently

$$\dim_{\mathscr{H}}(\mathscr{F}^{\alpha}E) \ge n - \alpha.$$

Existence of blow-ups and coarea inequality

Let Tan(E, x) be the set of all tangent sets of E at x, i.e. the set of all limit points in $L^1_{loc}(\mathbb{R}^n)$ -topology of the family

$$\left\{\frac{E-x}{r}: r>0\right\} \quad \text{as } r\to 0.$$

Theorem (Comi-S., 2018)

If E has locally finite fractional Caccioppoli α -perimeter in \mathbb{R}^n , then $\operatorname{Tan}(E, x) \neq \emptyset$ for all $x \in \mathscr{F}^{\alpha}E$. Moreover, if $F \in \operatorname{Tan}(E, x)$, then F has locally finite fractional Caccioppoli α -perimeter in \mathbb{R}^n and $\nu_F^{\alpha}(y) = \nu_E^{\alpha}(x)$ for $|D^{\alpha}\chi_F|$ -a.e. $y \in \mathscr{F}^{\alpha}F$.

What is missing: density estimates from below and we need coarea fromula.

Theorem (Comi-S., 2018)

If $f \in BV^{\alpha}(\mathbb{R}^n)$ is such that $\int_{\mathbb{R}} |D^{\alpha}\chi_{\{f>t\}}|(\mathbb{R}^n) dt < +\infty$, then

$$D^{\alpha}f = \int_{\mathbb{R}} D^{\alpha}\chi_{\{f>t\}} \, dt, \qquad |D^{\alpha}f| \leq \int_{\mathbb{R}} |D^{\alpha}\chi_{\{f>t\}}| \, dt.$$

Bad news: there exist $f \in BV^{\alpha}(\mathbb{R}^n)$ such that $\int_{\mathbb{R}} |D^{\alpha}\chi_{\{f>t\}}|(\mathbb{R}^n) dt = +\infty!$

Asymptotics as $\alpha \to 1^-$

Now it is important to observe that

$$\mu_{n,\alpha} = 2^{\alpha} \pi^{-\frac{n}{2}} \frac{\Gamma\left(\frac{n+\alpha+1}{2}\right)}{\Gamma\left(\frac{1-\alpha}{2}\right)} \sim \frac{1-\alpha}{\omega_n} \quad \text{as } \alpha \to 1^-.$$

$$\begin{split} & \text{Proposition (Comi-S., in preparation)} \\ & \text{Let } p \in [1, +\infty]. \text{ If } f \in C_c^2(\mathbb{R}^n) \text{ and } \varphi \in C_c^2(\mathbb{R}^n; \mathbb{R}^n) \text{, then} \\ & \lim_{\alpha \to 1^-} \| \nabla^{\alpha} f - \nabla f \|_{L^p(\mathbb{R}^n; \mathbb{R}^n)} = 0, \qquad \lim_{\alpha \to 1^-} \| \operatorname{div}^{\alpha} \varphi - \operatorname{div} \varphi \|_{L^p(\mathbb{R}^n)} = 0. \end{split}$$

Theorem (Comi-S., in preparation)

If $f \in BV(\mathbb{R}^n)$, then $D^{\alpha}f \to Df$ and $|D^{\alpha}f| \to |Df|$ as $\alpha \to 1^-$ and moreover

$$\lim_{\alpha \to 1^{-}} |D^{\alpha}f|(\mathbb{R}^n) = |Df|(\mathbb{R}^n).$$

Γ -convergence to Euclidean perimeter

Theorem (Comi-S., in preparation)

Let $\Omega \subset \mathbb{R}^n$ be an open set. If $\chi_{E_\alpha} \to \chi_E$ in $L^1_{\text{loc}}(\mathbb{R}^n)$ as $\alpha \to 1^-$, then

```
P(E;\Omega) \leq \liminf_{\alpha \to 1^{-}} |D^{\alpha} \chi_{E_{\alpha}}|(\Omega).
```

Theorem (Comi-S., in preparation)

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set. If $P(E) < +\infty$ and $|D\chi_E|(\partial \Omega) = 0$, then

$$\limsup_{\alpha \to 1^{-}} |D^{\alpha} \chi_{E}|(\Omega) \le P(E; \Omega).$$

Corollary (Comi-S., in preparation)

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set with Lipschitz boundary. For every measurable set $E \subset \mathbb{R}^n$, we have

$$\Gamma(L^{1}_{\mathrm{loc}}) - \lim_{\alpha \to 1^{-}} |D^{\alpha} \chi_{E}|(\Omega) = P(E; \Omega).$$

Open problems and future developments

This new distributional approach aims to deal with a large variety of problems:

- better characterisation of blow-ups (uniqueness?);
- Structure Theorem for (a subset of) $\mathscr{F}^{\alpha}E$ in the spirit of De Giorgi's Theorem;
- Gauss-Green & integration-by-part formulas for sets of (locally) finite fractional Caccioppoli α -perimeter;
- link between $BV^{\alpha}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$ and $W^{\alpha,1}(\mathbb{R}^n)$?
- what about minimal surfaces? fractional calibration? any regularity?
- isoperimetric sets (balls? symmetrisation?);
- asymptotics for $\beta \to \alpha^-$ given any $\alpha \in (0,1)$;
- asymptotics $\alpha \rightarrow 0^+$ (Hardy space?);
- good definition of BV^{α} functions on a general open set.

Thank you for your attention!