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No paradoxes without utility

Around 1650 Newton and Leibniz discovered Calculus and nowadays derivative is a
basic tool of any mathematician.

Somewhat surprisingly, the first appearance of the concept of a fractional
derivative is found in a letter written to de l’Hôpital by Leibniz in 1695!

What is the “half derivative” of x? It’s
d

1
2x

dx
1
2

= c
√
x (with c = 2√

π
by Lacroix, 1819).

Leibniz’s answer to De L’Hôpital, 30 September 1695:

“Il y a de l’apparence qu’on tirera un jour des consequences bien utiles de ces
paradoxes, car il n’y a gueres de paradoxes sans utilité.”

“This is an apparent paradox from which, one day, useful consequences will be
drawn, since there are no paradoxes without utility.”
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Three famous examples

Let us recall the three most famous fractional derivatives:

Lacroix (1819):
dαxm

dxα
=

Γ(m+ 1)

Γ(m− α+ 1)
xm−α

Riemann-Liouville (1832-1847): RLDα
a f(t) =

1

Γ(1− α)

d

dt

∫ t

a

f(τ)

(t− τ)α
dτ

Caputo (1967): CDα
a f(t) =

1

Γ(1− α)

∫ t

a

f ′(τ)

(t− τ)α
dτ.

Some observations:

• they are defined just for functions of one variable;
• only Caputo’s derivative kills constants;
• Caputo’s derivative requires f to be differentiable!

Question: What about fractional gradient? Can we just take
(
Dα,1, . . . , Dα,n

)
?

Be careful: the “coordinate approach” gives an operator not invariant by rotations!
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v

Silhav
/

y’s approach: invariance properties

Recently,
v

Silhav
/
y proposed that a “good” fractional operator should satisfy:

• invariance with respect to translations and rotations;
• α-homogeneity for some α ∈ (0, 1);
• mild continuity on suitable test space, e.g. C∞

c or Schwartz’s space S .

Idea behind: fractional operators should have a physical meaning!

For f ∈ C∞
c (Rn) and φ ∈ C∞

c (Rn;Rn), we consider

∇αf(x) := µn,α

∫
Rn

(f(y)− f(x))(y − x)

|y − x|n+α+1
dy,

and

divαφ(x) := µn,α

∫
Rn

(φ(y)− φ(x)) · (y − x)

|y − x|n+α+1
dy.

Theorem (
v

Silhav
/
y, 2018)

Up to mult. const., ∇α and divα are determined by the three requirements above.
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Duality, fractional Laplacian and Riesz transform

The operators ∇α and divα are dual, in the sense that∫
Rn

f divαφdx = −
∫
Rn

φ · ∇αf dx

for all f ∈ C∞
c (Rn) and φ ∈ C∞

c (Rn;Rn).

The operators ∇α and divα satisfy − divα∇α = (−∆)α.

If we let

Iαu(x) :=
Γ
(
n−α
2

)
2απ

n
2 Γ

(
α
2

) ∫
Rn

u(y)

|x− y|n−α
dy

be the fractional Riesz potential of u ∈ C∞
c (Rn;Rm), then

∇αf = I1−α∇f, divαφ = I1−α divφ.

Consequently, ∇αf ∈ L1(Rn) ∩ L∞(Rn) and divαφ ∈ L1(Rn;Rn) ∩ L∞(Rn;Rn).

Relax: ∇α and divα are well posed also for Lipc-regular test functions.

5/20



A little bit of literature

The operator ∇α ≡ ∇I1−α has in fact a long story:

• Horv
/
ath, 1959 (earliest reference up to knowledge);

• implicitly mentioned in Nikol’ski-Sobolev, 1961;
• non-local continuum mechanics by Edelen-Green-Laws, 1971;
• non-local porous medium equation Caffarelli-Soria-Vazquez, 2011-13, and

Biler-Imbert-Karch, 2015;
• fractional PDE theory and “geometric” inequalities by Shieh-Spector,

Ponce-Spector, Schikorra-Spector-Van Schaftingen all after 2015;

• distributional approach by
v

Silhav
/
y, 2018.
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Leibniz’s rules for ∇α and divα

For any f, g ∈ C∞
c (Rn), we have it holds

∇α(fg) = f∇αg + g∇αf +∇α
NL(f, g),

where

∇α
NL(f, g)(x) := µn,α

∫
Rn

(f(y)− f(x))(g(y)− g(x))(y − x)

|y − x|n+α+1
dy.

For any f ∈ C∞
c (Rn) and φ ∈ C∞

c (Rn;Rn), we also have it holds

divα(fφ) = f divαφ+ φ · ∇αf + divαNL(f, φ),

where

divαNL(f, φ)(x) := µn,α

∫
Rn

(f(y)− f(x))(φ(y)− φ(x)) · (y − x)

|y − x|n+α+1
dy.

The operators ∇α
NL and divαNL have a strong non-local behaviour.

The operators ∇α and divα commute with convolutions. Leibniz’s rules allow for
cut-off approximation arguments (careful control on non-local terms!).
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A fractional version of the Fundamental Theorem of Calculus

Theorem (Comi-S., 2018)

Let α ∈ (0, 1). If f ∈ C∞
c (Rn), then

f(y)− f(x) = µn,−α

∫
Rn

(
z − x

|z − x|n+1−α
− z − y

|z − y|n+1−α

)
· ∇αf(z) dz

for any x, y ∈ Rn.

Some observations:
• we get L1-control on translations;
• we get L1-control on smoothed-by-convolution functions;
• we get compactness of unif. bounded sequence in BV α(Rn).

Some “bad” news:
• left-hand integral is on the whole space (non-locality!);
• we cannot get local Poincaré inequality;
• we cannot get relative fractional isoperimetric inequality.
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Fractional Sobolev spaces and fractional operators

For p ∈ [1,+∞) and α ∈ (0, 1), we let

Wα,p(Rn) =

{
u ∈ Lp(Rn) : [u]pWα,p(Rn) =

∫
Rn

∫
Rn

|u(x)− u(y)|p

|x− y|n+pα
dx dy < +∞

}
.

A measurable set E ⊂ Rn has finite fractional perimeter if

Pα(E) = [χE ]Wα,1(Rn) = 2

∫
Rn\E

∫
E

1

|x− y|n+α
dx dy < +∞

and we define its fractional perimeter in an open set Ω ⊂ Rn as

Pα(E; Ω) =

∫
Ω

∫
Ω

|χE(x)− χE(y)|
|x− y|n+α

dx dy + 2

∫
Ω

∫
Rn\Ω

|χE(x)− χE(y)|
|x− y|n+α

dx dy.

Notice that we have the extension ∇α : Wα,1(Rn) → L1(Rn;Rn), since

∥∇αf∥L1(Rn;Rn) ≤ µn,α[f ]Wα,1(Rn) for all f ∈ C∞
c (Rn).

Analogously, we have the extension divα : Wα,1(Rn;Rn) → L1(Rn).
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Fractional variation and the space BV α(Rn)

We define
BV α(Rn) =

{
f ∈ L1(Rn) : |Dαf |(Rn) < +∞

}
,

where

|Dαf |(Rn) = sup
{∫

Rn

f divαφdx : φ ∈ C∞
c (Rn;Rn), ∥φ∥L∞(Rn;Rn) ≤ 1

}
.

In perfect analogy with the classical BV framework:

• BV α(Rn) is a Banach space and its norm is l.s.c. w.r.t. L1-convergence;
• C∞(Rn) ∩BV α(Rn) and C∞

c (Rn) are dense subspaces of BV α(Rn);
• given f ∈ L1(Rn), f ∈ BV α(Rn) ⇐⇒ ∃Dαf ∈ M(Rn;Rn) such that∫

Rn

f divαφdx = −
∫
Rn

φ · dDαf

for any φ ∈ Lipc(R
n;Rn);

• unif. bounded seq. in BV α(Rn) admit limit points in L1(Rn) w.r.t. L1
loc-conv.;

• for n ≥ 2 we have BV α(Rn) ⊂ L
n

n−α (Rn) (Gagliardo-Nirenberg-Sobolev).
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BV (Rn) ⊂ Wα,1(Rn) ⊂ Sα,1(Rn) ⊂ BV α(Rn) ⊂ W β,1(Rn)

We know that Wα,1(Rn) ⊂ BV α(Rn) and f ∈ Wα,1(Rn) ⇒ Dαf = ∇αfL n.

We define the distributional fractional Sobolev space

Sα,p(Rn) := {f ∈ Lp(Rn) : ∃∇α
wf ∈ Lp(Rn;Rn)}.

Given f ∈ BV α(Rn), we have f ∈ Sα,1(Rn) ⇐⇒ |Dαf | ≪ L n, in which case

Dαf = ∇α
wf L n.

We are able to prove that BV α(Rn) \ Sα,1(Rn) ̸= ∅.

Since Wα,1(Rn) is closed w.r.t. pointwise conv., also Sα,1(Rn) \Wα,1(Rn) ̸= ∅.

If f ∈ BV (Rn) then f ∈ BV α(Rn), with

∇αf(x) =
µn,α

n+ α− 1

∫
Rn

dDf(y)

|y − x|n+α−1
= I1−αDf(x)

for L n-a.e. x ∈ Rn.

Remarkably, if 0 < β < α < 1 then BV α(Rn) ⊂ W β,1(Rn).
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Sets of finite fractional Caccioppoli α-perimeter

In perfect analogy with the standard BV setting, we give the following definition:

Let α ∈ (0, 1) and E ⊂ Rn be a measurable set. For any open set Ω ⊂ Rn, we let

|DαχE |(Ω) = sup
{∫

E

divαφdx : φ ∈ C∞
c (Ω;Rn), ∥φ∥L∞(Ω;Rn) ≤ 1

}
be the fractional Caccioppoli α-perimeter of E in Ω. If |DαχE |(Ω) < +∞, then E
has finite fractional Caccioppoli α-perimeter in Ω.

Note that E ⊂ Rn has finite fractional Caccioppoli α-perimeter in Ω if and only if
DαχE ∈ M(Ω;Rn) and ∫

E

divαφdx = −
∫
Ω

φ · dDαχE

for all φ ∈ C∞
c (Ω;Rn).

Question: can we define a fractional reduce boundary?
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Fractional reduced boundary

It is now natural to give the following definition:

Let E ⊂ Rn be a set with finite fractional Caccioppoli α-perimeter in Ω. A point
x ∈ Ω belongs to the fractional reduced boundary of E (inside Ω) if

x ∈ supp(DαχE) and ∃ lim
r→0

DαχE(Br(x))

|DαχE |(Br(x))
∈ Sn−1.

We thus let FαE be the fractional reduced boundary of E and define

ναE : Ω ∩ FαE → Sn−1, ναE(x) := lim
r→0

DαχE(Br(x))

|DαχE |(Br(x))
, x ∈ Ω ∩ FαE,

the inner unit fractional normal to E (inside Ω).

We thus have the following Gauss-Green formula∫
E

divαφdx = −
∫
Ω∩FαE

φ · ναE d|DαχE |.

for all φ ∈ Lipc(Ω;R
n).
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Sets of finite fractional perimeter

If E ⊂ Rn satisfies Pα(E; Ω) < +∞, then

|DαχE |(Ω) ≤ µn,αPα(E; Ω) (strict inequality for Ω = Rn)

and
DαχE = ναE |DαχE | = ∇αχE L n.

Moreover, if χE ∈ BV (Rn), then

∇αχE(x) =
µn,α

n+ α− 1

∫
Rn

νE(y)

|y − x|n+α−1
d|DχE |(y)

for L n-a.e. x ∈ Rn.

Be careful! We have

Pα(E; Ω) < +∞ ⇒ L n(Ω ∩ FαE) > 0

including even the case χE ∈ BV (Rn). In other words, the non-local operator ∇α

produces a diffuse fractional boundary in the Wα,1 regime (⊂ Sα,1).

Example: E = (a, b) ⊂ R ⇒ FαE = R \
{

a+b
2

}
!
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Two examples: balls and halfspaces

For L n-a.e. x ∈ Rn, we have

∇αχB1(x) = − µn,α

n+ α− 1
gn,α(|x|)

x

|x|
,

where

gn,α(t) :=

∫
∂B1

y1
|te1 − y|n+α−1

dH n−1(y) > 0, for any t ≥ 0,

which means ναB1
(x) = −x/|x| for any x ̸= 0 and FαB1 = Rn \ {0}.

For the halfspace H+
ν = {y · ν ≥ 0}, if x · ν ̸= 0 then

∇αχH+
ν
(x) =

2α−1Γ
(
α
2

)
√
π Γ

(
1−α
2

) 1

|x · ν|α
ν.

In particular, FαH+
ν = Rn and να

H+
ν
≡ ν .
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Density estimates

Thanks to the invariance properties, we get

DαχE−x
r

=
1

rn−α
(Ix,r)#D

αχE ,

where Ix,r(y) = (y − x)/r. We are thus led to the following result.

Theorem (Comi-S., 2018)

There exist An,α, Bn,α > 0 as follows. If E ⊂ Rn has locally finite fractional
Caccioppoli α-perimeter in Rn, then for any x ∈ FαE there exists rx > 0 such that

|DαχE |(Br(x)) ≤ An,αr
n−α, |DαχE∩Br(x)|(R

n) ≤ Bn,αr
n−α

for all r ∈ (0, rx).

By a standard covering arguments, we thus get that

|DαχE | ≤ Cn,αH n−α FαE

and consequently
dimH (FαE) ≥ n− α.
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Existence of blow-ups and coarea inequality

Let Tan(E, x) be the set of all tangent sets of E at x, i.e. the set of all limit points
in L1

loc(R
n)-topology of the family{

E − x

r
: r > 0

}
as r → 0.

Theorem (Comi-S., 2018)

If E has locally finite fractional Caccioppoli α-perimeter in Rn, then Tan(E, x) ̸= ∅
for all x ∈ FαE . Moreover, if F ∈ Tan(E, x), then F has locally finite fractional
Caccioppoli α-perimeter in Rn and ναF (y) = ναE(x) for |DαχF |-a.e. y ∈ FαF .

What is missing: density estimates from below and we need coarea fromula.

Theorem (Comi-S., 2018)

If f ∈ BV α(Rn) is such that
∫
R |Dαχ{f>t}|(Rn) dt < +∞, then

Dαf =

∫
R
Dαχ{f>t} dt, |Dαf | ≤

∫
R
|Dαχ{f>t}| dt.

Bad news: there exist f ∈ BV α(Rn) such that
∫
R |Dαχ{f>t}|(Rn) dt = +∞!
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Asymptotics as α → 1−

Now it is important to observe that

µn,α = 2απ−n
2
Γ
(
n+α+1

2

)
Γ
(
1−α
2

) ∼ 1− α

ωn
as α → 1−.

Proposition (Comi-S., in preparation)

Let p ∈ [1,+∞]. If f ∈ C2
c (Rn) and φ ∈ C2

c (Rn;Rn), then

lim
α→1−

∥∇αf −∇f∥Lp(Rn;Rn) = 0, lim
α→1−

∥ divαφ− divφ∥Lp(Rn) = 0.

Theorem (Comi-S., in preparation)

If f ∈ BV (Rn), then Dαf ⇀ Df and |Dαf | ⇀ |Df | as α → 1− and moreover

lim
α→1−

|Dαf |(Rn) = |Df |(Rn).
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Γ-convergence to Euclidean perimeter

Theorem (Comi-S., in preparation)

Let Ω ⊂ Rn be an open set. If χEα
→ χE in L1

loc(R
n) as α → 1−, then

P (E; Ω) ≤ lim inf
α→1−

|DαχEα
|(Ω).

Theorem (Comi-S., in preparation)

Let Ω ⊂ Rn be a bounded open set. If P (E) < +∞ and |DχE |(∂Ω) = 0, then

lim sup
α→1−

|DαχE |(Ω) ≤ P (E; Ω).

Corollary (Comi-S., in preparation)

Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary. For every measurable
set E ⊂ Rn, we have

Γ(L1
loc) - lim

α→1−
|DαχE |(Ω) = P (E; Ω).
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Open problems and future developments

This new distributional approach aims to deal with a large variety of problems:

• better characterisation of blow-ups (uniqueness?);
• Structure Theorem for (a subset of) FαE in the spirit of De Giorgi’s Theorem;
• Gauss-Green & integration-by-part formulas for sets of (locally) finite

fractional Caccioppoli α-perimeter;
• link between BV α(Rn) ∩ L∞(Rn) and Wα,1(Rn)?
• what about minimal surfaces? fractional calibration? any regularity?
• isoperimetric sets (balls? symmetrisation?);
• asymptotics for β → α− given any α ∈ (0, 1);
• asymptotics α → 0+ (Hardy space?);
• good definition of BV α functions on a general open set.

Thank you for your attention!
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